Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 107(3-2): 035209, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37073043

RESUMEN

We propose a model of ion-electron plasma (or nucleus-electron plasma) that accounts for the electronic structure around nuclei (i.e., ion structure) as well as for ion-ion correlations. The model equations are obtained through the minimization of an approximate free-energy functional, and it is shown that the model fulfills the virial theorem. The main hypotheses of this model are (1) nuclei are treated as classical indistinguishable particles, (2) electronic density is seen as a superposition of a uniform background and spherically symmetric distributions around each nucleus (system of ions in a plasma), (3) free energy is approached using a cluster expansion (nonoverlapping ions), and (4) resulting ion fluid is modeled through an approximate integral equation. In the present paper, the model is described only in its average-atom version.

2.
Phys Rev E ; 99(5-1): 052134, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31212454

RESUMEN

In previous publications [Piron and Blenski, Phys. Rev. E 94, 062128 (2016)2470-004510.1103/PhysRevE.94.062128; Blenski and Piron, High Energy Density Phys. 24, 28 (2017)1574-181810.1016/j.hedp.2017.05.005], the authors have proposed Debye-Hückel-approximate free-energy functionals of the pair distribution functions for one-component fluids and two-component plasmas. These functionals yield the corresponding Debye-Hückel integral equations when they are minimized with respect to the pair distribution functions, lead to correct thermodynamic relations, and fulfill the virial theorem. In the present paper, we update our results by providing simpler functionals that have the same properties. We relate these functionals to the approaches of Lado [Phys. Rev. A 8, 2548 (1973)0556-279110.1103/PhysRevA.8.2548] and of Olivares and McQuarrie [J. Chem. Phys. 65, 3604 (1976)JCPSA60021-960610.1063/1.433545]. We also discuss briefly the nonuniqueness issue that is raised by these results.

3.
Artículo en Inglés | MEDLINE | ID: mdl-32165874

RESUMEN

We review the 9th NLTE code comparison workshop, which was held in the Jussieu campus, Paris, from November 30th to December 4th, 2015. This time, the workshop was mainly focused on a systematic investigation of iron NLTE steady-state kinetics and emissivity, over a broad range of temperature and density. Through these comparisons, topics such as modeling of the dielectronic processes, density effects or the effect of an external radiation field were addressed. The K-shell spectroscopy of iron plasmas was also addressed, notably through the interpretation of tokamak and laser experimental spectra.

4.
Phys Rev E ; 93: 043210, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27176421

RESUMEN

Of the two approaches of density-functional theory molecular dynamics, quantum molecular dynamics is limited at high temperature by computational cost whereas orbital-free molecular dynamics, based on an approximation of the kinetic electronic free energy, can be implemented in this domain. In the case of deuterium, it is shown how orbital-free molecular dynamics can be regarded as the limit of quantum molecular dynamics at high temperature for the calculation of the equation of state. To this end, accurate quantum molecular dynamics calculations are performed up to 20 eV at mass densities as low as 0.5g/cm^{3} and up to 10 eV at mass densities as low as 0.2g/cm^{3}. As a result, the limitation in temperature so far attributed to quantum molecular dynamics is overcome and an approach combining quantum and orbital-free molecular dynamics is used to construct an equation of state of deuterium. The thermodynamic domain addressed is that of the fluid phase above 1 eV and 0.2g/cm^{3}. Both pressure and internal energy are calculated as functions of temperature and mass density, and various exchange-correlation contributions are compared. The generalized gradient approximation of the exchange-correlation functional, corrected to approximately include the influence of temperature, is retained and the results obtained are compared to other approaches and to experimental shock data; in parts of the thermodynamic domain addressed, these results significantly differ from those obtained in other first-principles investigations which themselves disagree. The equations of state of hydrogen and tritium above 1 eV and above, respectively, 0.1g/cm^{3} and 0.3g/cm^{3}, can be simply obtained by mass density scaling from the results found for deuterium. This ab initio approach allows one to consistently cover a very large domain of temperature on the domain of mass density outlined above.

5.
Phys Rev E ; 94(6-1): 062128, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085298

RESUMEN

The Debye-Hückel approximation to the free energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-Hückel equivalent to the functional derived in the hypernetted chain framework by Morita and Hiroike, as well as by Lado. It allows one to obtain the Debye-Hückel integral equation through a minimization with respect to the pair correlation function, leads to the correct form of the internal energy, and fulfills the virial theorem.

6.
Opt Express ; 21(23): 29000-5, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514415

RESUMEN

Here we report for the first time a passive mode-locking of single section Fabry-Perot (FP) lasers based on InAs quantum dots(QDs) grown on (113)B InP substrate. Devices under study are a 1 and 2 mm long laser diodes emitting around 1.58 µm. Self-starting pulses with repetition rates around 23 and 39 GHz and pulse widths down to 1.5 ps are observed after propagation through a suitable length of single-mode fiber for intracavity dispersion compensation. A RF spectral width as low as 20 kHz has been obtained leading to a low timing jitter RMS.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 2): 026403, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21405914

RESUMEN

The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.

8.
Opt Lett ; 25(17): 1255-7, 2000 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18066184

RESUMEN

Functional electro-optic polymer thin films embedded in microcavity structures have been poled by an all-optical procedure based on the interference of multiphoton absorption processes. The photoinduced X((2)) tensor was then further addressed at modal resonance for the fundamental wavelength, leading to significant enhancement of the second-harmonic-generation efficiency. An order-of-magnitude enhancement, which is due to electric field resonant conditions inside the microcavity, has been probed by an optical parametric oscillator, in comparison with a single-path thin-film configuration. This configuration opens new perspectives in the realm of nonlinear photonic device processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA