Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34502489

RESUMEN

The subchondral bone and its associated vasculature play an important role in the onset of osteoarthritis (OA). Integration of different aspects of the OA environment into multi-cellular and complex human, in vitro models is therefore needed to properly represent the pathology. In this study, we exploited a mesenchymal stromal cell line/endothelial cell co-culture to produce an in vitro human model of vascularized osteogenic tissue. A cocktail of inflammatory cytokines, or conditioned medium from mechanically-induced OA engineered microcartilage, was administered to this vascularized bone model to mimic the inflamed OA environment, hypothesizing that these treatments could induce the onset of specific pathological traits. Exposure to the inflammatory factors led to increased network formation by endothelial cells, reminiscent of the abnormal angiogenesis found in OA subchondral bone, demineralization of the constructs, and increased collagen production, signs of OA related bone sclerosis. Furthermore, inflammation led to augmented expression of osteogenic (alkaline phosphatase (ALP) and osteocalcin (OCN)) and angiogenic (vascular endothelial growth factor (VEGF)) genes. The treatment, with a conditioned medium from the mechanically-induced OA engineered microcartilage, also caused increased demineralization and expression of ALP, OCN, ADAMTS5, and VEGF; however, changes in network formation by endothelial cells were not observed in this second case, suggesting a possible different mechanism of action in inducing OA-like phenotypes. We propose that this vascularized bone model could represent a first step for the in vitro study of bone changes under OA mimicking conditions and possibly serve as a tool in testing anti-OA drugs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Modelos Biológicos , Osteoartritis/metabolismo , Células de la Médula Ósea/patología , Línea Celular , Técnicas de Cocultivo , Células Endoteliales/patología , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad , Osteoartritis/patología
2.
Biomaterials ; 272: 120773, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33798958

RESUMEN

The generation of engineered models of the osteochondral complex to study its pathologies and develop possible treatments is hindered by the distinctly different properties of articular cartilage and subchondral bone, with the latter characterized by vascularization. In vitro models of the osteochondral complex have been mainly engineered as biphasic constructs containing just cartilage and bone cells, a condition very dissimilar from the in vivo environment. The different cellular components of the osteochondral complex are governed by interacting biochemical signaling; hence, to study the crosstalk among chondrocytes, osteoblasts, and endothelial cells, we have developed a novel triphasic model of the osteochondral tissue interface. Wet-spun poly(ε-caprolactone) (PCL) and PCL/hydroxyapatite (HA) scaffolds in combination with a methacrylated gelatin (gelMA) hydrogel were used as the polymeric backbone of the constructs. The scaffold components were engineered with human bone marrow derived mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs), and differentiated using a dual chamber microphysiological system (MPS) bioreactor that allows the simultaneous, separate flow of media of different compositions for induced differentiation of each compartment towards a cartilaginous or osseous lineage. Within the engineered Microphysiological Vascularized Osteochondral System, hMSCs showed spatially distinct chondrogenic and osteogenic markers in terms of histology and gene expression. HUVECs formed a stable capillary-like network in the engineered bone compartment and enhanced both chondrogenic and osteogenic differentiation of hMSCs, resulting in the generation of an in vitro system that mimics a vascularized osteochondral interface tissue.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Condrogénesis , Células Endoteliales , Humanos , Ingeniería de Tejidos , Andamios del Tejido
3.
Stem Cell Res Ther ; 10(1): 388, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842986

RESUMEN

BACKGROUND: Animal cell-based systems have been critical tools in understanding tissue development and physiology, but they are less successful in more practical tasks, such as predicting human toxicity to pharmacological or environmental factors, in which the congruence between in vitro and clinical outcomes lies on average between 50 and 60%. Emblematic of this problem is the high-density micromass culture of embryonic limb bud mesenchymal cells, derived from chick, mouse, or rat. While estimated predictive value of this model system in toxicological studies is relatively high, important failures prevent its use by international regulatory agencies for toxicity testing and policy development. A likely underlying reason for the poor predictive capacity of animal-based culture models is the small but significant physiological differences between species. This deficiency has inspired investigators to develop more organotypic, 3-dimensional culture system using human cells to model normal tissue development and physiology and assess pharmacological and environmental toxicity. METHODS: We have developed a modified, miniaturized micromass culture model using adult human bone marrow-derived mesenchymal progenitor cells (hBM-MPCs) that is amenable to moderate throughput and high content analysis to study chondrogenesis. The number of cells per culture was reduced, and a methacrylated gelatin (gelMA) overlay was incorporated to normalize the morphology of the cultures. RESULTS: These modified human cell-based micromass cultures demonstrated robust chondrogenesis, indicated by increased Alcian blue staining and immunodetectable production of collagen type II and aggrecan, and stage-specific chondrogenic gene expression. In addition, in cultures of hBM-MPCs transduced with a lentiviral collagen type II promoter-driven GFP reporter construct, levels of GFP reporter activity correlated well with changes in endogenous collagen type II transcript levels, indicating the feasibility of non-invasive monitoring of chondrogenesis. CONCLUSIONS: The modified hBM-MPC micromass culture system described here represents a reproducible and controlled model for analyzing mechanisms of human skeletal development that may later be applied to pharmacological and environmental toxicity studies.


Asunto(s)
Médula Ósea/metabolismo , Cartílago/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre/metabolismo , Adulto , Anciano , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Persona de Mediana Edad
4.
Stem Cell Res Ther ; 9(1): 112, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29678192

RESUMEN

The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.


Asunto(s)
Huesos/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Ingeniería de Tejidos/métodos , Humanos , Andamios del Tejido
5.
J Mater Sci Mater Med ; 27(3): 44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26758891

RESUMEN

The employment of a tissue engineering scaffold able to release an antimicrobial agent with a controlled kinetics represents an effective tool for the treatment of infected tissue defects as well as for the prevention of scaffolds implantation-related infectious complications. This research activity was aimed at the development of additively manufactured star poly(ε-caprolactone) (*PCL) scaffolds loaded with levofloxacin, investigated as antimicrobial fluoroquinolone model. For this purpose a computer-aided wet-spinning technique allowing functionalizing the scaffold during the fabrication process was explored. Scaffolds with customized composition, microstructure and anatomical external shape were developed by optimizing the processing parameters. Morphological, thermal and mechanical characterization showed that drug loading did not compromise the fabrication process and the final performance of the scaffolds. The developed *PCL scaffolds showed a sustained in vitro release of the loaded antibiotic for 5 weeks. The proposed computer-aided wet-spinning technique appears well suited for the fabrication of anatomical scaffolds endowed with levofloxacin-releasing properties to be tested in vivo for the regeneration of long bone critical size defects in a rabbit model.


Asunto(s)
Levofloxacino/farmacología , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Diseño Asistido por Computadora , Levofloxacino/química , Microscopía Electrónica de Rastreo , Conejos , Estrés Mecánico , Propiedades de Superficie
6.
Biomed Res Int ; 2015: 323571, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26558266

RESUMEN

Bone tissue engineering is an emerging field, representing one of the most exciting challenges for scientists and clinicians. The possibility of combining mesenchymal stem cells and scaffolds to create engineered tissues has brought attention to a large variety of biomaterials in combination with osteoprogenitor cells able to promote and regenerate bone tissue. Human adipose tissue is officially recognized as an easily accessible source of mesenchymal stem cells (AMSCs), a significant factor for use in tissue regenerative medicine. In this study, we analyze the behavior of a clonal finite cell line derived from human adipose tissue seeded on poly(ε-caprolactone) (PCL) film, prepared by solvent casting. PCL polymer is chosen for its good biocompatibility, biodegradability, and mechanical properties. We observe that AMSCs are able to adhere to the biomaterial and remain viable for the entire experimental period. Moreover, we show that the proliferation process and osteogenic activity of AMSCs are maintained on the biofilm, demonstrating that the selected biomaterial ensures cell colonization and the development of an extracellular mineralized matrix. The results of this study highlight that AMSCs and PCL film can be used as a suitable model to support regeneration of new bone for future tissue engineering strategies.


Asunto(s)
Tejido Adiposo/citología , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Poliésteres/farmacología , Células Madre/citología , Andamios del Tejido/química , Línea Celular , Humanos , Poliésteres/química , Células Madre/química , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...