Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Pharm ; 659: 124248, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782150

RESUMEN

Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.

2.
Pharm Res ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769275

RESUMEN

PURPOSE: This study investigates the thermal interactions between adjacent vials during freezing and assesses their impact on nucleation times. METHODS: Various loading configurations were analyzed to understand their impact on nucleation times. Configurations involving direct contact between vials and freeze-dryer shelves were studied, along with setups using empty vials between filled ones. Additionally, non-conventional loading configurations and glycol-filled vials were tested. The analysis includes 2R and 20R vials, which are commonly utilized in the freezing and lyophilization of drug products, along with two different fill depths, 1 and 1.4 cm. RESULTS: The investigation revealed that configurations with direct contact between vials and freeze-dryer shelves led to substantial thermal interactions, resulting in delayed nucleation in adjacent vials and affecting the temperature at which nucleation takes place in a complex way. In another setup, empty vials were placed between filled vials, significantly reducing thermal interactions. Further tests with non-conventional configurations and glycol-filled vials confirmed the presence of thermal interactions with a minimal inhibitory effect. CONCLUSIONS: These findings carry significant implications for the pharmaceutical industry, highlighting the role of thermal interactions among vials during freezing and their impact on the temperature at which ice nucleation occurs.

3.
Int J Pharm ; 652: 123822, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242257

RESUMEN

Tendon disorders are common injuries, which can be greatly debilitating as they are often accompanied by great pain and inflammation. Moreover, several problems are also related to the laceration of the tendon-to-bone interface (TBI), a specific region subjected to great mechanical stresses. The techniques used nowadays for the treatment of tendon and TBI injuries often involve surgery. However, one critical aspect of this procedure involves the elevated risk of fail due to the tissues weakening and the postoperative alterations of the normal joint mechanics. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with tunable elastic and mechanical properties, that could guarantee an effective support during the new tissue formation. Based on these premises, the aim of this work was the design and the development of highly porous 3D scaffolds based on thermoplastic polyurethane, and doped with chondroitin sulfate and caseinophosphopeptides, able to mimic the structural, biomechanical, and biochemical functions of the TBI. The obtained scaffolds were characterized by a homogeneous microporous structure, and by a porosity optimal for cell nutrition and migration. They were also characterized by remarkable mechanical properties, reaching values comparable to the ones of the native tendons. The scaffolds promoted the tenocyte adhesion and proliferation when caseinophosphopetides and chondroitin sulfate are present in the 3D structure. In particular, caseinophosphopeptides' optimal concentration for cell proliferation resulted 2.4 mg/mL. Finally, the systems evaluation in vivo demonstrated the scaffolds' safety, since they did not cause any inflammatory effect nor foreign body response, representing interesting platforms for the regeneration of injured TBI.


Asunto(s)
Sulfatos de Condroitina , Andamios del Tejido , Andamios del Tejido/química , Porosidad , Sulfatos de Condroitina/química , Poliuretanos/química , Ingeniería de Tejidos/métodos , Regeneración Ósea , Tendones
4.
Int J Pharm ; 650: 123679, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38065348

RESUMEN

Protein degradation is a major concern for protein-based therapeutics. It may alter the biological activity of the product and raise the potential for undesirable effects on the patients. Among the numerous drivers of protein degradation, shear stress has been the focus around which much work has revolved since the 1970s. In the pharmaceutical realm, the product is often processed through several unit operations, which include mixing, pumping, filtration, filling, and atomization. Nonetheless, the drug might be exposed to significant shear stresses, which might cooperatively contribute to product degradation, together with interfacial stress. This review presents fundamentals of shear stress about protein structure, followed by an overview of the drivers of product degradation. The impact of shear stress on protein stability in different unit operations is then presented, and recommendations for limiting the adverse effects on the biopharmaceutical formulations are outlined. Finally, several devices used to explore the effects of shear stress are discussed.


Asunto(s)
Proteínas , Humanos , Composición de Medicamentos , Estrés Mecánico , Proteínas/química
5.
Pharmaceutics ; 15(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38004549

RESUMEN

The freeze-drying of biopharmaceuticals is a common strategy to extend their shelf-life and facilitate the distribution of therapeutics. The drying phase is the most demanding one in terms of energy consumption and determines the overall process time. Our previous work showed how the loading configuration can impact freezing. This paper focuses on primary drying by comparing the thermal behaviour of vials loaded in direct contact with the shelf or nested in a rack system. The overall heat transfer coefficient from the apparatus to the product was evaluated at different chamber pressures (5-30 Pa) and shelf temperatures (from -10 °C to +30 °C), and in the case of various vial positions (central, semi-border, and border vials). Because of the suspended configuration, the heat transfer coefficient was less affected by chamber pressure in vials nested in a rack system. The two loading configurations displayed comparable heat transfer efficiency below 10 Pa. For higher chamber pressure, the heat transfer coefficients of nested vials were lower than those of vials in direct contact with the shelf. Nevertheless, the rack system was beneficial for reducing the inter-vial variability as it promoted higher uniformity in the heat transfer coefficients of central vials. Eventually, thermal image analyses highlighted limited temperature differences between the vials and the rack system.

6.
ACS Biomater Sci Eng ; 9(10): 5871-5885, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37671648

RESUMEN

Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.

7.
Mol Pharm ; 20(8): 3975-3986, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435823

RESUMEN

The use of tert-butyl alcohol for the lyophilization of pharmaceuticals has seen an uptick over the past years. Its advantages include increased solubility of hydrophobic drugs, enhanced product stability, shorter reconstitution time, and decreased processing time. While the mechanisms of protein stabilization exerted by cryo- and lyo-protectants are well known when water is the solvent of choice, little is known for organic solvents. This work investigates the interactions between two model proteins, namely, lactate dehydrogenase and myoglobin, and various excipients (mannitol, sucrose, 2-hydroxypropyl-ß-cyclodextrin and Tween 80) in the presence of tert-butyl alcohol. We thermally characterized mixtures of these components by differential scanning calorimetry and freeze-drying microscopy. We also spectroscopically evaluated the protein recovery after freezing and freeze-drying. We additionally performed molecular dynamics simulations to elucidate the interactions in ternary mixtures of the herein-investigated excipients, tert-butyl alcohol and the proteins. Both experiments and simulations revealed that tert-butyl alcohol had a detrimental impact on the recovery of the two investigated proteins, and no combination of excipients yielded a satisfactory recovery when the organic solvent was present within the formulation. Simulations suggested that the denaturing effect of tert-butyl alcohol was related to its propensity to accumulate in the proximity of the peptide surface, especially near positively charged residues.


Asunto(s)
Productos Biológicos , Alcohol terc-Butílico , Alcohol terc-Butílico/química , Excipientes/química , Simulación de Dinámica Molecular , Solventes/química , Proteínas , Liofilización , Rastreo Diferencial de Calorimetría
8.
Pharmaceutics ; 15(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514161

RESUMEN

Freeze-drying, also known as lyophilization, is a process that facilitates the removal of water through sublimation from a frozen product (primary drying) [...].

9.
J Am Chem Soc ; 145(30): 16678-16690, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466340

RESUMEN

We present a new thermodynamic model to investigate the relative effects of excluded volume and soft interaction contributions in determining whether a cosolute will either destabilize or stabilize a protein in solution. This model is unique in considering an atomistically detailed model of the protein and accounting for the preferential accumulation/exclusion of the osmolyte molecules from the protein surface. Importantly, we use molecular dynamics simulations and experiments to validate the model. The experimental approach presents a unique means of decoupling excluded volume and soft interaction contributions using a linear polymeric series of cosolutes with different numbers of glucose subunits, from 1 (glucose) to 8 (maltooctaose), as well as an 8-mer of glucose units in the closed form (γ-CD). By studying the stabilizing effect of cosolutes along this polymeric series using lysozyme as a model protein, we validate the thermodynamic model and show that sugars stabilize proteins according to an excluded volume mechanism.


Asunto(s)
Proteínas , Azúcares , Polímeros , Glucosa , Termodinámica
10.
Cryst Growth Des ; 23(5): 3195-3201, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37159657

RESUMEN

Modified surfaces like siliconized glass are commonly used to support protein crystallization and facilitate obtaining crystals. Over the years, various surfaces have been proposed to decrease the energetic penalty required for consistent protein clustering, but scarce attention has been paid to the underlying mechanisms of interactions. Here, we propose self-assembled monolayers that are surfaces exposing fine-tuned moieties with a very regular topography and subnanometer roughness, as a tool to unveil the interaction between proteins and functionalized surfaces. We studied the crystallization of three model proteins having progressively narrower metastable zones, i.e., lysozyme, catalase, and proteinase K, on monolayers exposing thiol, methacrylate, and glycidyloxy groups. Thanks to comparable surface wettability, the induction or the inhibition of nucleation was readily attributed to the surface chemistry. For example, thiol groups strongly induced the nucleation of lysozyme thanks to electrostatic pairing, whereas methacrylate and glycidyloxy groups had an effect comparable to unfunctionalized glass. Overall, the action of surfaces led to differences in nucleation kinetics, crystal habit, and even crystal form. This approach can support the fundamental understanding of the interaction between protein macromolecules and specific chemical groups, which is crucial for many technological applications in the pharmaceutical and food industry.

11.
Pharmaceutics ; 15(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986722

RESUMEN

The measurement of product temperature is one of the methods that can be adopted, especially in the pharmaceutical industry, to monitor the freeze-drying process and to obtain the values of the process parameters required by mathematical models useful for in-line (or off-line) optimization. Either a contact or a contactless device and a simple algorithm based on a mathematical model of the process can be employed to obtain a PAT tool. This work deeply investigated the use of direct temperature measurement for process monitoring to determine not only the product temperature, but also the end of primary drying and the process parameters (heat and mass transfer coefficients), as well as evaluating the degree of uncertainty of the obtained results. Experiments were carried out with thin thermocouples in a lab-scale freeze-dryer using two different model products, sucrose and PVP solutions; they are representative of two types of commonly freeze-dried products, namely those whose structures are strongly nonuniform in the axial direction, showing a variable pore size with the cake depth and a crust (leading to a strongly nonlinear cake resistance), as well as those whose structures are uniform, with an open structure and, consequently, a cake resistance varying linearly with thickness. The results confirm that the model parameters in both cases can be estimated with an uncertainty that is in agreement with that obtained with other more invasive and expensive sensors. Finally, the strengths and weaknesses of the proposed approach coupled with the use of thermocouples was discussed, comparing with a case using a contactless device (infrared camera).

12.
Pharmaceutics ; 15(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839958

RESUMEN

The distribution of biopharmaceuticals often requires either ultra-cold conditions or lyophilisation. In both cases, the drug product is frozen and, thus, exposed to similar stress conditions, which can be detrimental to its quality. However, these stresses can be inhibited or mitigated by a suitable formulation and/or an appropriate freezing design. This paper addresses how the key freezing parameters, i.e., ice nucleation temperature and cooling rate, impact the freezing behaviour of a sucrose-based formulation. The analysis included two loading configurations, vials directly resting on the shelf and nested in a rack system. The loading configuration affected the product freezing rate and the ice nucleation temperature distribution, resulting in larger ice crystals in the case of vials nested in a rack system. SEM micrographs and specific surface area measurements confirmed the different product morphology. Eventually, the different product morphology impacted the bioactivity recovery of lactate dehydrogenase.

13.
Sci Rep ; 12(1): 16334, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175610

RESUMEN

The nucleation behavior of water is crucial in many fields, spanning meteorology, glaciology, biology, and astrophysics. We report observations suggesting an effect of diffusion kinetics in water on the heterogeneous immersion/contact mode nucleation temperature distribution of ice. We performed differential scanning calorimetry analyses of repeated freeze/thaw cycles and investigated the effect of several variables on the regularity of the nucleation temperature distributions obtained. We observed that the thawing temperature and residence time above 0 °C affect the width of the measured distributions. We explain the observed phenomena according to the diffusion behavior of an external nucleator. Specifically, conditions of enhanced diffusion of the nucleator translated into broader, more scattered distributions, while conditions of limited diffusion translated into narrower, more regular distributions. Lastly, based on our experimental findings, we propose a theoretical explanation centered on the temperature dependence of diffusion kinetics in water.

14.
J Phys Chem B ; 126(33): 6180-6190, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35968960

RESUMEN

Most biological events occur on time scales that are difficult to access using conventional all-atom molecular dynamics simulations in explicit solvent. Implicit solvent techniques offer a promising solution to this problem, alleviating the computational cost associated with the simulation of large systems and accelerating the sampling compared to explicit solvent models. The substitution of water molecules by a mean field, however, introduces simplifications that may penalize accuracy and impede the prediction of certain physical properties. We demonstrate that existing implicit solvent models developed using a transfer free energy approach, while satisfactory at reproducing the folding behavior of globular proteins, fare less well in characterizing the conformational properties of intrinsically disordered proteins. We develop a new implicit solvent model that maximizes the degree of accuracy for both disordered and folded proteins. We show, by comparing the simulation outputs to experimental data, that in combination with the a99SB-disp force field, the implicit solvent model can describe both disordered (aß40, PaaA2, and drkN SH3) and folded ((AAQAA)3, CLN025, Trp-cage, and GTT) peptides. Our implicit solvent model permits a computationally efficient investigation of proteins containing both ordered and disordered regions, as well as the study of the transition between ordered and disordered protein states.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Simulación de Dinámica Molecular , Entropía , Péptidos/química , Solventes/química
15.
PLoS One ; 17(2): e0262409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35130281

RESUMEN

Allosteric disulfide bonds permit highly responsive, transient 'switch-like' properties that are ideal for processes like coagulation and inflammation that require rapid and localised responses to damage or injury. Haemophilia A (HA) is a rare bleeding disorder managed with exogenous coagulation factor(F) VIII products. FVIII has eight disulfide bonds and is known to be redox labile, but it is not known how reduction/oxidation affects the structure-function relationship, or its immunogenicity-a serious complication for 30% severe HA patients. Understanding how redox-mediated changes influence FVIII can inform molecular engineering strategies aimed at improving activity and stability, and reducing immunogenicity. FVIII is a challenging molecule to work with owing to its poor expression and instability so, in a proof-of-concept study, we used molecular dynamics (MD) to identify which disulfide bonds were most likely to be reduced and how this would affect structure/function; results were then experimentally verified. MD identified Cys1899-Cys1903 disulfide as the most likely to undergo reduction based on energy and proximity criteria. Further MD suggested this reduction led to a more open conformation. Here we present our findings and highlight the value of MD approaches.


Asunto(s)
Hemofilia A
16.
Anal Bioanal Chem ; 414(18): 5473-5482, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35149878

RESUMEN

Lateral flow immunoassay (LFIA) is widely employed as point-of-care tests (POCT) for the diagnosis of infectious diseases. The accuracy of LFIA largely depends on the quality of the immunoreagents used. Typical LFIAs to reveal the immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) employ anti-human immunoglobulin (hIG) antibodies and recombinant viral antigens, which usually are unstable and poorly soluble. Broad selective bacterial proteins, such as Staphylococcal protein A (SpA) and Streptococcal protein G (SpG) can be considered alternatives to anti-hIG to increase versatility and sensitivity of serological LFIAs because of their high binding capacity, interspecies reactivity, and robustness. We developed two colorimetric LFA devices including SpA and SpG linked to gold nanoparticles (GNP) as detectors and explored the use of a specific, stable, and soluble immunodominant fraction of the nucleocapsid protein from SARS-CoV-2 as the capturing agent. The optimal amount of SpA-GNP and SpG-GNP conjugates and the protein-to-GNP ratios were defined through a full factorial experimental design to maximize the diagnostic sensitivity of the LFIAs. The new LFA devices were applied to analyze 105 human serum samples (69 positive and 36 negatives according to reference molecular diagnostic methods). The results showed higher sensitivity (89.9%, 95% CI 82.7-97.0) and selectivity (91.7%, 82.6-100) for the SpA-based compared to the SpG-based LFA. In addition, 18 serum samples from cats and dogs living with COVID-19 patients were analyzed and 14 showed detectable levels of anti-SARS-CoV-2 antibodies, thus illustrating the flexibility of the SpA- and SpG-based LFAs.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Animales , Anticuerpos Antivirales , COVID-19/diagnóstico , Gatos , Perros , Oro/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , SARS-CoV-2 , Sensibilidad y Especificidad
17.
Pharmaceutics ; 13(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34959416

RESUMEN

Chromatography is a widely used separation process for purification of biopharmaceuticals that is able to obtain high purities and concentrations. The phenomena that occur during separation, mass transfer and adsorption are quite complex. To better understand these phenomena and their mechanisms, multi-component adsorption isotherms must be investigated. High-throughput methodologies are a very powerful tool to determine adsorption isotherms and they waste very small amounts of sample and chemicals, but the quantification of component concentrations is a real bottleneck in multi-component isotherm determination. The behavior of bovine serum albumin, Corynebacterium diphtheriae CRM197 protein and lysozyme, selected as model proteins in binary mixtures with hydrophobic resin, is investigated here. In this work we propose a new method for determining multi-component adsorption isotherms using high-throughput experiments with filter plates, by exploiting microfluidic capillary electrophoresis. The precision and accuracy of the microfluidic capillary electrophoresis platform were evaluated in order to assess the procedure; they were both found to be high and the procedure is thus reliable in determining adsorption isotherms for binary mixtures. Multi-component adsorption isotherms were determined with a totally high-throughput procedure that turned out to be a very fast and powerful tool. The same procedure can be applied to every kind of high-throughput screening.

18.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947740

RESUMEN

In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.

19.
Pharmaceutics ; 13(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834181

RESUMEN

Freeze-drying is commonly used to increase the shelf-life of pharmaceuticals and biopharmaceuticals. Freezing represents a crucial phase in the freeze-drying process, as it determines both cycle efficiency and product quality. For this reason, different strategies have been developed to allow for a better control of freezing, among them, the so-called vacuum-induced surface freezing (VISF), which makes it possible to trigger nucleation at the same time in all the vials being processed. We studied the effect of different vial types, characterized by the presence of hydrophilic (sulfate treatment) or hydrophobic (siliconization and TopLyo Si-O-C-H layer) inner coatings, on the application of VISF. We observed that hydrophobic coatings promoted boiling and blow-up phenomena, resulting in unacceptable aesthetic defects in the final product. In contrast, hydrophilic coatings increased the risk of fogging (i.e., the undesired creeping of the product upward along the inner vial surface). We also found that the addition of a surfactant (Tween 80) to the formulation suppressed boiling in hydrophobic-coated vials, but it enhanced the formation of bubbles. This undesired bubbling events induced by the surfactant could, however, be eliminated by a degassing step prior to the application of VISF. Overall, the combination of degasification and surfactant addition seems to be a promising strategy for the successful induction of nucleation by VISF in hydrophobic vials.

20.
Pharmaceutics ; 13(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34683957

RESUMEN

The freezing phenomenon has a dramatic impact on the quality of freeze-dried products. Several freezing models applied to solutions in vials have been proposed to predict the resulting product morphology and describe heat transfer mechanisms. However, there is a lack of detailed experimental observations of the freezing phenomenon in vials in the literature. Thus, the present work offers new experimental observations of the freezing phenomenon in vials by infrared (IR) thermography. IR imaging allowed each vial's whole axial temperature profile to be collected during freezing, providing significant insights into the process. Spontaneous nucleation and vacuum-induced surface freezing (VISF), as a controlled nucleation technique, are investigated. Batches having vials in direct contact with the shelf (exchanging heat mainly through conduction) as well as suspended (exchanging heat mainly through natural convection and radiation) were tested. The study used three solutions: sucrose 5%, mannitol 5%, and dextran 10%. SEM images coupled with an automated image segmentation technique were also performed to examine possible correlations between the freezing observations and the resulting pore size distributions. IR thermography was found to be a promising tool for experimentally predicting the resulting product morphology in-line.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...