Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38470723

RESUMEN

Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, cellular sensitization and low integration with dental and gingival tissues lead to poor osseointegration, affecting the implant stability in the bone and favoring infections and inflammatory processes in the peri-implant space. These failures pave the way to develop and improve new biocompatible implant materials. CERID dental implants are made of a titanium core embedded in a zirconium dioxide ceramic layer, ensuring absence of corrosion, a higher biological compatibility and a better bone deposition compared to titanium ones. We investigated hDPSCs' biological behavior, i.e., cell adhesion, proliferation, morphology and osteogenic potential, when seeded on both CERID and titanium implants, before and after cleansing with two different procedures. SEM and AFM analysis of the surfaces showed that while CERID disks were not significantly affected by the cleansing system, titanium ones exhibited well-visible modifications after brush treatment, altering cell morphology. The proliferation rate of DPSCs was increased for titanium, while it remained unaltered for CERID. Both materials hold an intrinsic potential to promote osteogenic commitment of neuro-ectomesenchymal stromal cells. Interestingly, the CERID surface mitigated the immune response by inducing an upregulation of anti-inflammatory cytokine IL-10 on activated PBMCs when a pro-inflammatory microenvironment was established. Our in vitro results pave the way to further investigations aiming to corroborate the potential of CERID implants as suitable biomaterials for dental implant applications.

2.
Expert Rev Clin Immunol ; 20(5): 463-484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38163928

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED: This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION: MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.


Asunto(s)
Artritis Reumatoide , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Artritis Reumatoide/terapia , Resultado del Tratamiento , Trasplante de Células Madre Mesenquimatosas/métodos , Estudios Multicéntricos como Asunto
3.
ACS Appl Mater Interfaces ; 15(51): 59224-59235, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38091494

RESUMEN

Biomaterials able to promote neuronal development and neurite outgrowth are highly desired in neural tissue engineering for the repair of damaged or disrupted neural tissue and restoring the axonal connection. For this purpose, the use of either electroactive or micro- and nanostructured materials has been separately investigated. Here, the use of a nanomodulated conductive poly(3,4-ethylendioxithiophene) poly(styrenesulfonate) (PEDOT/PSS) substrate that exhibits instructive topographical and electrical cues at the same time was investigated for the first time. In particular, thin films featuring grooves with sizes comparable with those of neuronal neurites (NanoPEDOT) were fabricated by electrochemical polymerization of PEDOT/PSS on a nanomodulated polycarbonate template. The ability of NanoPEDOT to support neuronal development and direct neurite outgrowth was demonstrated by assessing cell viability and proliferation, expression of neuronal markers, average neurite length, and direction of neuroblastoma N2A cells induced to differentiate on this novel support. In addition to the beneficial effect of the nanogrooved topography, a 30% increase was shown in the average length of neurites when differentiating cells were subjected to an electrical stimulation of a few microamperes for 6 h. The results reported here suggest a favorable effect on the neuronal development of the synergistic combination of nanotopography and electrical stimulation, supporting the use of NanoPEDOT in neural tissue engineering to promote physical and functional reconnection of impaired neural networks.


Asunto(s)
Neurogénesis , Neuronas , Materiales Biocompatibles/farmacología , Neuritas/metabolismo , Conductividad Eléctrica
4.
Front Cell Dev Biol ; 11: 1196023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206922

RESUMEN

Introduction: In autoimmune diseases, particularly in systemic sclerosis and chronic periaortitis, a strict correlation between chronic inflammation and fibrosis exists. Since the currently used drugs prove mostly effective in suppressing inflammation, a better comprehension of the molecular mechanisms exerted by cell types implicated in fibro-inflammation is needed to develop novel therapeutic strategies. Mesenchymal stromal/stem cells (MSCs) are being matter of deep investigation to unveil their role in the evolution of fibrogenetic process. Several findings pointed out the controversial implication of MSCs in these events, with reports lining at a beneficial effect exerted by external MSCs and others highlighting a direct contribution of resident MSCs in fibrosis progression. Human dental pulp stem cells (hDPSCs) have demonstrated to hold promise as potential therapeutic tools due to their immunomodulatory properties, which strongly support their contribution to tissue regeneration. Methods: Our present study evaluated hDPSCs response to a fibro-inflammatory microenvironment, mimicked in vitro by a transwell co-culture system with human dermal fibroblasts, at early and late culture passages, in presence of TGF-ß1, a master promoter of fibrogenesis. Results and Discussion: We observed that hDPSCs, exposed to acute fibro-inflammatory stimuli, promote a myofibroblast-to-lipofibroblast transition, likely based on BMP2 dependent pathways. Conversely, when a chronic fibro-inflammatory microenvironment is generated, hDPSCs reduce their anti-fibrotic effect and acquire a pro-fibrotic phenotype. These data provide the basis for further investigations on the response of hDPSCs to varying fibro-inflammatory conditions.

5.
Life (Basel) ; 13(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36836820

RESUMEN

BACKGROUND: MatriDerm and Integra are both widely used collagenic acellular dermal matrices (ADMs) in the surgical setting, with similar characteristics in terms of healing time and clinical indication. The aim of the present study is to compare the two ADMs in terms of clinical and histological results in the setting of dermato-oncological surgery. METHODS: Ten consecutive patients with medical indications to undergo surgical excision of skin cancers were treated with a 2-step procedure at our Dermatologic Surgery Unit. Immediately after tumor removal, both ADMs were positioned on the wound bed, one adjacent to the other. Closure through split-thickness skin grafting was performed after approximately 3 weeks. Conventional histology, immunostaining and ELISA assay were performed on cutaneous samples at different timepoints. RESULTS: No significant differences were detected in terms of either final clinical outcomes or in extracellular matrix content of the neoformed dermis. However, Matriderm was observed to induce scar retraction more frequently. In contrast, Integra was shown to carry higher infectious risk and to be more slowly reabsorbed into the wound bed. Sometimes foreign body-like granulomatous reactions were also observed, especially in Integra samples. CONCLUSIONS: Even in the presence of subtle differences between the ADMs, comparable global outcomes were demonstrated after dermato-oncological surgery.

6.
Stem Cell Res Ther ; 14(1): 31, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36805780

RESUMEN

BACKGROUND: Human dental pulp stem cells represent a mesenchymal stem cell niche localized in the perivascular area of dental pulp and are characterized by low immunogenicity and immunomodulatory/anti-inflammatory properties. Pericytes, mural cells surrounding the endothelium of small vessels, regulate numerous functions including vessel growth, stabilization and permeability. It is well established that pericytes have a tight cross talk with endothelial cells in neoangiogenesis and vessel stabilization, which are regulated by different factors, i.e., microenvironment and flow-dependent shear stress. The aim of this study was to evaluate the effects of a pulsatile unidirectional flow in the presence or not of an inflammatory microenvironment on the biological properties of pericyte-like cells isolated from human dental pulp (hDPSCs). METHODS: Human DPSCs were cultured under both static and dynamic conditions with or without pre-activated peripheral blood mononuclear cells (PBMCs). Pulsatile unidirectional flow shear stress was generated by using a specific peristaltic pump. The angiogenic potential and inflammatory properties of hDPSCs were evaluated through reverse phase protein microarrays (RPPA), confocal immunofluorescence and western blot analyses. RESULTS: Our data showed that hDPSCs expressed the typical endothelial markers, which were up-regulated after endothelial induction, and were able to form tube-like structures. RPPA analyses revealed that these properties were modulated when a pulsatile unidirectional flow shear stress was applied to hDPSCs. Stem cells also revealed a downregulation of the immune-modulatory molecule PD-L1, in parallel with an up-regulation of the pro-inflammatory molecule NF-kB. Immune-modulatory properties of hDPSCs were also reduced after culture under flow-dependent shear stress and exposure to an inflammatory microenvironment. This evidence was strengthened by the detection of up-regulated levels of expression of pro-inflammatory cytokines in PBMCs. CONCLUSIONS: In conclusion, the application of a pulsatile unidirectional flow shear stress induced a modulation of immunomodulatory/inflammatory properties of dental pulp pericyte-like cells.


Asunto(s)
Células Endoteliales , Pericitos , Humanos , Pulpa Dental , Leucocitos Mononucleares , Células Madre
7.
Front Physiol ; 13: 930804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060701

RESUMEN

Poly (3,4-ethylendioxythiophene) polystyrene sulphonate (PEDOT:PSS) is the workhorse of organic bioelectronics and is steadily gaining interest also in tissue engineering due to the opportunity to endow traditional biomaterials for scaffolds with conductive properties. Biomaterials capable of promoting neural stem cell differentiation by application of suitable electrical stimulation protocols are highly desirable in neural tissue engineering. In this study, we evaluated the adhesion, proliferation, maintenance of neural crest stemness markers and neurogenic commitment of neural crest-derived human dental pulp stem cells (hDPSCs) cultured on PEDOT:PSS nanostructured thin films deposited either by spin coating (SC-PEDOT) or by electropolymerization (ED-PEDOT). In addition, we evaluated the immunomodulatory properties of hDPSCs on PEDOT:PSS by investigating the expression and maintenance of the Fas ligand (FasL). We found that both SC-PEDOT and ED-PEDOT thin films supported hDPSCs adhesion and proliferation; however, the number of cells on the ED-PEDOT after 1 week of culture was significantly higher than that on SC-PEDOT. To be noted, both PEDOT:PSS films did not affect the stemness phenotype of hDPSCs, as indicated by the maintenance of the neural crest markers Nestin and SOX10. Interestingly, neurogenic induction was clearly promoted on ED-PEDOT, as indicated by the strong expression of MAP-2 and ß -Tubulin-III as well as evident cytoskeletal reorganisation and appreciable morphology shift towards a neuronal-like shape. In addition, strong FasL expression was detected on both undifferentiated or undergoing neurogenic commitment hDPSCs, suggesting that ED-PEDOT supports the expression and maintenance of FasL under both expansion and differentiation conditions.

8.
Polymers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683895

RESUMEN

Bone substitute biomaterials (BSBs) represent a promising alternative to bone autografts, due to their biocompatibility, osteoconduction, slow resorption rates, and the ability to define and maintain volume for bone gain in dentistry. Many biomaterials are tailored to provide structural and biological support for bone regeneration, and allow the migration of bone-forming cells into the bone defect. Neural crest-derived stem cells isolated from human dental pulp (hDPSCs) represent a suitable stem cell source to study the biological effects of BSBs on osteoprogenitor cells involved in the physiological bone regenerative processes. This study aimed to evaluate how three different BSBs affect the stem cell properties, osteogenic differentiation, and inflammatory properties of hDPSCs. Our data highlight that BSBs do not alter cell proliferation and stemness markers expression, nor induce any inflammatory responses. Bone metabolism data show that hDPSCs exposed to the three BSBs distinctively secrete the factors supporting osteoblast activity and osteoclast activity. Our data indicate that (i) hDPSCs are a suitable stem cell source to study the effects of BSBs, and that (ii) the formulation of BSBs may condition the biological properties of stem cells, suggesting their versatile suitability to different dentistry applications.

9.
Nutrients ; 14(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35565895

RESUMEN

Energy drinks (EDs) are non-alcoholic beverages containing high amounts of caffeine and other psychoactive substances. EDs also contain herbal extract whose concentration is usually unknown. EDs can have several adverse effects on different organs and systems, but their effects on the gastrointestinal (GI) tract have been poorly investigated. To determine the acute effects of EDs on the GI tract, we administered EDs, coffee, soda cola, or water to Sprague-Dawley rats (n = 7 per group, randomly assigned) for up to five days, and analyzed the histopathological changes in the GI tract. Data were compared among groups by Kruskal-Wallis or Mann-Whitney tests. We found that, while EDs did not cause any evident acute lesion to the GI tract, they triggered eosinophilic infiltration in the intestinal mucosa; treatment with caffeine alone at the same doses found in EDs leads to the same effects, suggesting that it is caffeine and not other substances present in the EDs that causes this infiltration. The interruption of caffeine administration leads to the complete resolution of eosinophilic infiltration. As no systemic changes in pro-inflammatory or immunomodulating molecules were observed, our data suggest that caffeine present in ED can cause a local, transient inflammatory status that recruits eosinophils.


Asunto(s)
Bebidas Energéticas , Animales , Cafeína/efectos adversos , Café , Bebidas Energéticas/efectos adversos , Tracto Gastrointestinal , Ratas , Ratas Sprague-Dawley
10.
Skin Res Technol ; 28(1): 133-141, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34555218

RESUMEN

BACKGROUND: Both mesenchymal stromal cells (MSCs) and acellular dermal matrices (ADMs) represent fascinating therapeutic tools in the wound healing scenario. Strategies aimed at combining these two treatment modalities are currently under investigation. Moreover, scarcity of quantitative, nondestructive techniques for quality assessment of engineered tissues poses great limitations in regenerative medicine and collagen autofluorescence-based imaging techniques are acquiring great importance in this setting. OBJECTIVE: Our goals were to assess the in vitro interactions between ADSCs and ADMs and to analyze extracellular-matrix production. METHODS: Adipose-derived MSCs (ADSC) were plated on 8-mm punch biopsies of a commercially available ADM (Integra®). Conventional histology with hematoxylin-eosin staining, environmental scanning electron microscopy, and confocal-laser scanning microscopy were used to obtain imaging of ADSC-seeded ADMs. Collagen production by ADSCs was quantified by mean fluorescence intensity (MFI), expressed in terms of positive pixels/field, obtained through ImageJ software processing of three-dimensional projections from confocal scanning images. Control conditions included: fibroblast-seeded ADM, ADSC- and fibroblast-induced scaffolds, and Integra® alone. RESULTS: ADSCs were efficiently seeded on Integra® and were perfectly incorporated in the pores of the scaffold. Collagen production was revealed to be significantly higher when ADSCs were seeded on ADM rather than in all other control conditions. Collagen autofluorescence was efficiently used as a surrogate marker of ECM production. CONCLUSIONS: Combined therapies based on MSCs and collagenic ADMs are promising therapeutic options for chronic wounds. Not only ADSCs can be efficiently seeded on ADMs, but ADMs also seem to potentiate their regenerative properties, as highlightable from fluorescence confocal imaging.


Asunto(s)
Dermis Acelular , Células Madre Mesenquimatosas , Colágeno , Imagenología Tridimensional , Microscopía Confocal
11.
Stem Cell Res Ther ; 12(1): 598, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863286

RESUMEN

BACKGROUND: Dental pulp stem cells (DPSCs) are low immunogenic and hold immunomodulatory properties that, along with their well-established multi-potency, might enhance their potential application in autoimmune and inflammatory diseases. The present study focused on the ability of DPSCs to modulate the inflammatory microenvironment through PD1/PD-L1 pathway. METHODS: Inflammatory microenvironment was created in vitro by the activation of T cells isolated from healthy donors and rheumatoid arthritis (RA) patients with anti-CD3 and anti-CD28 antibodies. Direct and indirect co-cultures between DPSCs and PBMCs were carried out to evaluate the activation of immunomodulatory checkpoints in DPSCs and the inflammatory pattern in PBMCs. RESULTS: Our data suggest that the inflammatory stimuli trigger DPSCs immunoregulatory functions that can be exerted by both direct and indirect contact. As demonstrated by using a selective PD-L1 inhibitor, DPSCs were able to activate compensatory pathways targeting to orchestrate the inflammatory process by modulating pro-inflammatory cytokines in pre-activated T lymphocytes. The involvement of PD-L1 mechanism was also observed in autologous inflammatory status (pulpitis) and after direct exposure to pre-activated T cells from RA patients suggesting that immunomodulatory/anti-inflammatory properties are strictly related to their stemness status. CONCLUSIONS: Our findings point out that the communication with the inflammatory microenvironment is essential in licensing their immunomodulatory properties.


Asunto(s)
Antígeno B7-H1 , Pulpa Dental , Inmunomodulación , Células Madre Mesenquimatosas , Antígeno B7-H1/fisiología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental/inmunología , Humanos , Células Madre Mesenquimatosas/inmunología
12.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467097

RESUMEN

Dental implants are one of the most frequently used treatment options for tooth replacement, and titanium is the metal of choice due to its demonstrated superiority in resisting corrosion, lack of allergic reactions and mechanical strength. Surface roughness of titanium implants favors the osseointegration process; nevertheless, its topography may provide a suitable substrate for bacterial biofilm deposition, causing peri-implantitis and leading to implant failure. Subgingival prophylaxis treatments with cleansing powders aimed to remove the bacterial accumulation are under investigation. Two different air-polishing powders-glycine and tagatose-were assayed for their cleaning and antimicrobial potential against a Pseudomonas biofilm and for their effects on human dental pulp stem cells (hDPSCs), seeded on sandblasted titanium disks. Immunofluorescence analyses were carried out to evaluate cell adhesion, proliferation, stemness and osteogenic differentiation. The results demonstrate that both the powders have a great in vitro cleaning potential in the early period and do not show any negative effects during hDPSCs osteogenic differentiation process, suggesting their suitability for enhancing the biocompatibility of titanium implants. Our data suggest that the evaluated cleansing systems reduce microbial contamination and allow us to propose tagatose as an adequate alternative to the gold standard glycine for the air-polishing prophylaxis treatment.


Asunto(s)
Antibacterianos/farmacología , Pulpa Dental/citología , Dentífricos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Antibacterianos/efectos adversos , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Implantes Dentales/microbiología , Dentífricos/efectos adversos , Glicina/efectos adversos , Glicina/farmacología , Hexosas/efectos adversos , Hexosas/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Osteogénesis , Pseudomonas aeruginosa/efectos de los fármacos , Titanio/química
13.
Front Oral Health ; 2: 635055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047993

RESUMEN

Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues, characterized by plastic adherence in culture and specific surface markers (CD105, CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes. Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth, alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation and expansion of MSCs. Dental MSCs have regenerative and immunomodulatory properties; they are scarcely immunogenic but actively modulate T cell reactivity. in vitro studies and animal models of autoimmune diseases have provided evidence for the suppressive effects of dental MSCs on peripheral blood mononuclear cell proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17 cell ratio. Appropriately stimulated MSCs produce anti-inflammatory mediators, such as transforming growth factor-ß (TGF-ß), prostaglandin E2, and interleukin (IL)-10. A particular mechanism through which MSCs exert their immunomodulatory action is via the production of extracellular vesicles containing such anti-inflammatory mediators. Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes and activated macrophages, promoting their polarization to an anti-inflammatory M2-phenotype. A growing number of trials focusing on MSCs to treat autoimmune and inflammatory conditions are ongoing, but very few use dental tissue as a cellular source. Recent results suggest that dental MSCs are a promising therapeutic tool for immune-mediated disorders. However, the exact mechanisms responsible for dental MSC-mediated immunosuppression remain to be clarified, and impairment of dental MSCs immunosuppressive function in inflammatory conditions and aging must be assessed before considering autologous MSCs or their secreted vesicles for therapeutic purposes.

14.
Materials (Basel) ; 13(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932607

RESUMEN

Functional reconstruction of bone defects represents a clinical challenge in the regenerative medicine field, which targets tissue repair following traumatic injuries and disease-related bone deficiencies. In this regard, the optimal biomaterial should be safe, biocompatible and tailored in order to promote the activation of host progenitor cells towards bone repair. Bioactive glasses might be suitable biomaterials due to their composition being able to induce the host healing response and, eventually, anti-bacterial properties. In this study we investigated whether and how an innovative bioactive glass composition, called BGMS10, may affect cell adhesion, morphology, proliferation, immunomodulation and osteogenic differentiation of human dental pulp stem cells (hDPSCs). When cultured on BGMS10, hDPSCs maintained their proliferation rate and typical fibroblast-like morphology, showing the expression of stemness markers STRO-1 and c-Kit. Moreover, the expression of FasL, a key molecule in mediating immunomodulation effects of hDPSCs, was maintained. BGMS10 also proved to trigger osteogenic commitment of hDPSCs, as confirmed by the activation of bone-related transcription factors RUNX2 and Osx and the ongoing deposition of extracellular matrix supported by the expression of OPN and OCN. Our findings suggest that BGMS10 not only maintains the typical biological and immunomodulatory properties of hDPSCs but also favors the osteogenic commitment.

15.
Front Cell Dev Biol ; 8: 279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32500073

RESUMEN

Human dental pulp stem cells (hDPSCs) are characterized by high proliferation rate, the multi-differentiation ability and, notably, low immunogenicity and immunomodulatory properties exerted through different mechanisms including Fas/FasL pathway. Despite their multipotency, hDPSCs require particular conditions to achieve chondrogenic differentiation. This might be due to the perivascular localization and the expression of angiogenic marker under standard culture conditions. FasL stimulation was able to promote the early induction of chondrogenic commitment and to lead the differentiation at later times. Interestingly, the expression of angiogenic marker was reduced by FasL stimulation without activating the extrinsic apoptotic pathway in standard culture conditions. In conclusion, these findings highlight the peculiar embryological origin of hDPSCs and provide further insights on their biological properties. Therefore, Fas/FasL pathway not only is involved in determining the immunomodulatory properties, but also is implicated in supporting the chondrogenic commitment of hDPSCs.

16.
Front Cell Dev Biol ; 8: 609204, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33634100

RESUMEN

A subset of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) developed a condition of hyper-inflammation, which can cause multi-organ damage and the more severe forms of coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) can promote tissue regeneration and modulate immune responses and, thus, have the rational requirements to be used to counteract SARS-CoV-2-induced pneumonia and hyper-inflammation. The aim of the present study was to gain insight into possible mechanisms of action of MSCs obtained from human dental pulp [dental pulp stem cells (DPSCs)] in COVID-19 patients. We investigated the concentrations of 18 cytokines in supernatants of peripheral blood mononuclear cells (PBMCs) obtained from COVID-19 patients cultured in vitro alone and in contact with DPSCs. The modulation of cytokines in PBMCs was confirmed by real-time PCR. IL-6 was the sole cytokine detected in supernatants of DPSCs. In resting conditions, co-culture increased IL-1ß, IL-2, IL-5, IL-6, IL-10, IL-18, TNFα, and granulocyte macrophage colony-stimulating factor (GM-CSF) levels. When PBMCs were activated with anti-CD3/CD28 antibody-coated beads, co-culture increased IL-6 and GM-CSF, whereas it decreased IFNγ, TNFα, IL-2, IL-5, IL-9, IL-10, IL-12 (p70), IL-17A, IL-18, IL-21, IL-23, and IL-27 levels. Concentrations of IL-1ß, IL-4, IL-13, and IL-22 were not affected. The comparison of cytokine concentrations in supernatants of PBMCs from COVID-19 patients vs. healthy subjects revealed lower concentrations of IL-10 and higher concentrations of IL-18 in supernatants of CD3/CD28-activated PBMCs from COVID-19 patients. Results are explorative but indicate that DPSCs can modulate the production of cytokines deregulated in COVID-19 patients, supporting their potential use in COVID-19.

17.
Neural Regen Res ; 15(3): 373-381, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31571644

RESUMEN

The peripheral nerve injuries, representing some of the most common types of traumatic lesions affecting the nervous system, are highly invalidating for the patients besides being a huge social burden. Although peripheral nervous system owns a higher regenerative capacity than does central nervous system, mostly depending on Schwann cells intervention in injury repair, several factors determine the extent of functional outcome after healing. Based on the injury type, different therapeutic approaches have been investigated so far. Nerve grafting and Schwann cell transplantation have represented the gold standard treatment for peripheral nerve injuries, however these approaches own limitations, such as scarce donor nerve availability and donor site morbidity. Cell based therapies might provide a suitable tool for peripheral nerve regeneration, in fact, the ability of different stem cell types to differentiate towards Schwann cells in combination with the use of different scaffolds have been widely investigated in animal models of peripheral nerve injuries in the last decade. Dental pulp is a promising cell source for regenerative medicine, because of the ease of isolation procedures, stem cell proliferation and multipotency abilities, which are due to the embryological origin from neural crest. In this article we review the literature concerning the application of tooth derived stem cell populations combined with different conduits to peripheral nerve injuries animal models, highlighting their regenerative contribution exerted through either glial differentiation and neuroprotective/neurotrophic effects on the host tissue.

18.
Cell Prolif ; 52(6): e12675, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31553127

RESUMEN

OBJECTIVES: To evaluate the regenerative potential of human dental pulp stem cells (hDPSCs) in an animal model of stress urinary incontinence (SUI). SUI, an involuntary leakage of urine, is due to physical stress involving an increase in bladder pressure and a damage of external urethral sphincter affecting muscles and nerves. Conventional therapies can only relieve the symptoms. Human DPSCs are characterized by peculiar stemness and immunomodulatory properties and might provide an alternative tool for SUI therapy. MATERIALS AND METHODS: In vitro phase: hDPSCs were induced towards the myogenic commitment following a 24 hours pre-conditioning with 5-aza-2'-deoxycytidine (5-Aza), then differentiation was evaluated. In vivo phase: pudendal nerve was transected in female rats to induce stress urinary incontinence; then, pre-differentiated hDPSCs were injected in the striated urethral sphincter. Four weeks later, urethral sphincter regeneration was assayed through histological, functional and immunohistochemical analyses. RESULTS: Human DPSCs were able to commit towards myogenic lineage in vitro and, four weeks after cell injection, hDPSCs engrafted in the external urethral sphincter whose thickness was almost recovered, committed towards myogenic lineage in vivo, promoted vascularization and an appreciable recovery of the continence. Moreover, hDPSCs were detected within the nerve, suggesting their participation in repair of transected nerve. CONCLUSIONS: These promising data and further investigations on immunomodulatory abilities of hDPSCs would allow to make them a potential tool for alternative therapies of SUI.


Asunto(s)
Pulpa Dental/efectos de los fármacos , Células Madre/citología , Uretra/efectos de los fármacos , Incontinencia Urinaria de Esfuerzo/tratamiento farmacológico , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Pulpa Dental/citología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratas , Uretra/citología
19.
Cells Tissues Organs ; 207(1): 46-57, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31261153

RESUMEN

In the field of wound healing, stem cell-based strategies are gaining importance for their regenerative potential. Adipose-derived stem cells (ADSCs) are a particular subset of mesenchymal stem cells present in the stromal-vascular fraction of the adipose tissue, today considered very attractive for their relative abundance and accessibility in the human body. However, ADSCs are still not routinely used in normal clinical practice. Several studies have also reported ADSC transplantation in association with biomaterials in an attempt to enhance the local retention and growth rate of the cells. The aim of our study was to evaluate the ability of ADSCs to build a dermal scaffold to be potentially used as a dermal substitute in the field of wound healing, with optimal biocompatibility and mechanical properties. ADSCs were defined as CD90-, CD73-, and CD105-positive cells. ADSCs turned out to be capable of secreting all the main components of the extracellular matrix (ECM) upon stimulation, thus efficiently producing a collagen and fibronectin-containing dermal matrix. We also checked whether the ADSC-produced dermal scaffold could be seeded with keratinocytes. The scaffolding material directly produced by ADSCs has several advantages when compared to the commercially available ones: it is easily obtained from the patients and it is 100% biocompatible and supports cell-ECM interaction. Moreover, it represents a possible powerful therapeutic tool for patients with chronic ulcers since it appears to be potentially grafted with keratinocytes layers, thus bypassing the classical two-step grafting procedure.


Asunto(s)
Tejido Adiposo/citología , Piel Artificial , Células Madre/citología , Ingeniería de Tejidos/métodos , Tejido Adiposo/metabolismo , Colágeno Tipo IV/metabolismo , Epidermis/metabolismo , Matriz Extracelular/metabolismo , Humanos , Integrina alfaV/metabolismo , Queratinocitos/citología , Cicatrización de Heridas
20.
Ann Diagn Pathol ; 41: 106-111, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31233902

RESUMEN

Poorly differentiated clusters (PDC) are aggregates of at least five neoplastic cells lacking evidence of glandular differentiation. By definition, they can be present at the invasive front (peripheral PDC or pPDC) and within the tumor stroma (central PDC or cPDC). In colorectal cancer (CRC), PDC are considered adverse prognosticators and seem to reflect epithelial mesenchymal transition (EMT). In this study, we have investigated the immuno-expression of two EMT-related proteins, E-cadherin and ß-catenin, in PDC of primary CRCs and matched liver metastases. pPDC always showed nuclear ß-catenin staining and diffusely reduced/absence of E-cadherin expression as opposed cPDC which showed nuclear ß-catenin immunoreactivity and E-cadherin expression in about 50% of cases. In addition, the pattern of ß-catenin and E-cadherin expression differed between PDC and the main tumor, and between primary CRC and liver metastasis (LM), in a percentage of cases. A discordant pattern of ß-catenin and E-cadherin expression between pPDC and cPDC, between main tumor and cPDC, and between primary CRC and LM, confirms that EMT is a dynamic and reversible process in CRC. On the overall, this suggests that pPDC and cPDC are biologically different. We may advocate that PDC develop at the tumor center (cPDC) and then some of them migrate towards the tumor periphery while progressively completing EMT process (pPDC). Based on these results, PDC presence and counting may have different prognostic relevance if the assessment is done at the invasive front of the tumor or in the intratumor stroma.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Colorrectales/patología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Transición Epitelial-Mesenquimal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...