Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 25(6): 670-682, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36849306

RESUMEN

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T cells have demonstrated remarkable efficacy against hematological malignancies; however, they have not experienced the same success against solid tumors such as glioblastoma (GBM). There is a growing need for high-throughput functional screening platforms to measure CAR T-cell potency against solid tumor cells. METHODS: We used real-time, label-free cellular impedance sensing to evaluate the potency of anti-disialoganglioside (GD2) targeting CAR T-cell products against GD2+ patient-derived GBM stem cells over a period of 2 days and 7 days in vitro. We compared CAR T products using two different modes of gene transfer: retroviral transduction and virus-free CRISPR-editing. Endpoint flow cytometry, cytokine analysis and metabolomics data were acquired and integrated to create a predictive model of CAR T-cell potency. RESULTS: Results indicated faster cytolysis by virus-free CRISPR-edited CAR T cells compared with retrovirally transduced CAR T cells, accompanied by increased inflammatory cytokine release, CD8+ CAR T-cell presence in co-culture conditions and CAR T-cell infiltration into three-dimensional GBM spheroids. Computational modeling identified increased tumor necrosis factor α concentrations with decreased glutamine, lactate and formate as being most predictive of short-term (2 days) and long-term (7 days) CAR T cell potency against GBM stem cells. CONCLUSIONS: These studies establish impedance sensing as a high-throughput, label-free assay for preclinical potency testing of CAR T cells against solid tumors.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Linfocitos T CD8-positivos , Anticuerpos , Citocinas , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T
2.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36382633

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cells have demonstrated high clinical response rates against hematological malignancies (e.g., CD19+ cancers) but have shown limited activity in patients with solid tumors. Recent work showed that precise insertion of a CAR at a defined locus improves treatment outcomes in the context of a CD19 CAR; however, it is unclear if such a strategy could also affect outcomes in solid tumors. Furthermore, CAR manufacturing generally relies on viral vectors for gene delivery, which comprise a complex and resource-intensive part of the manufacturing supply chain. METHODS: Anti-GD2 CAR T cells were generated using CRISPR/Cas9 within 9 days using recombinant Cas9 protein and nucleic acids, without any viral vectors. The CAR was specifically targeted to the T cell receptor alpha constant gene (TRAC). T cell products were characterized at the level of the genome, transcriptome, proteome, and secretome using CHANGE-seq, targeted next-generation sequencing, scRNA-seq, spectral cytometry, and ELISA assays, respectively. Functionality was evaluated in vivo in an NSG™ xenograft neuroblastoma model. RESULTS: In comparison to retroviral CAR T cells, virus-free CRISPR CAR (VFC-CAR) T cells exhibit TRAC-targeted genomic integration of the CAR transgene, elevation of transcriptional and protein characteristics associated with a memory-like phenotype, and low tonic signaling prior to infusion arising in part from the knockout of the T cell receptor. On exposure to the GD2 target antigen, anti-GD2 VFC-CAR T cells exhibit specific cytotoxicity against GD2+ cells in vitro and induce solid tumor regression in vivo. VFC-CAR T cells demonstrate robust homing and persistence and decreased exhaustion relative to retroviral CAR T cells against a human neuroblastoma xenograft model. CONCLUSIONS: This study leverages virus-free genome editing technology to generate CAR T cells featuring a TRAC-targeted CAR, which could inform manufacturing of CAR T cells to treat cancers, including solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Neuroblastoma , Humanos , Gangliósidos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptores de Antígenos de Linfocitos T , Antígenos CD19 , Linfocitos T , Neuroblastoma/patología
3.
Nat Biomed Eng ; 5(1): 77-88, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32719514

RESUMEN

The function of a T cell depends on its subtype and activation state. Here, we show that imaging of the autofluorescence lifetime signals of quiescent and activated T cells can be used to classify the cells. T cells isolated from human peripheral blood and activated in culture using tetrameric antibodies against the surface ligands CD2, CD3 and CD28 showed specific activation-state-dependent patterns of autofluorescence lifetime. Logistic regression models and random forest models classified T cells according to activation state with 97-99% accuracy, and according to activation state (quiescent or activated) and subtype (CD3+CD8+ or CD3+CD4+) with 97% accuracy. Autofluorescence lifetime imaging can be used to non-destructively determine T-cell function.


Asunto(s)
Activación de Linfocitos/fisiología , Imagen Óptica/métodos , Linfocitos T , Células Cultivadas , Humanos , Linfocitos T/clasificación , Linfocitos T/citología , Linfocitos T/fisiología
4.
Biophys J ; 118(9): 2086-2102, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31699335

RESUMEN

Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell's microenvironment. Here, we develop a micropatterned substrate that allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing reprogramming while preserving many of the biophysical and biochemical cues within the cells' microenvironment. On this substrate, we were able to both watch and physically confine cells into discrete islands during the reprogramming of human somatic cells from skin biopsies and blood draws obtained from healthy donors. Using high-content analysis, we identified a combination of eight nuclear characteristics that can be used to generate a computational model to predict the progression of reprogramming and distinguish partially reprogrammed cells from those that are fully reprogrammed. This approach to track reprogramming in situ using micropatterned substrates could aid in biomanufacturing of therapeutically relevant iPSCs and be used to elucidate multiscale cellular changes (cell-cell interactions as well as subcellular changes) that accompany human cell fate transitions.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Humanos
5.
Biotechnol J ; 13(2)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28840981

RESUMEN

The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed "living drugs" for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control.


Asunto(s)
Bioingeniería , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citología , Tratamiento Basado en Trasplante de Células y Tejidos , Técnicas de Transferencia de Gen , Humanos , Neoplasias/terapia , Control de Calidad , Receptores de Antígenos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...