Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 225: 115220, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36610173

RESUMEN

Ixazomib is the only orally active proteasome inhibitor used in clinical practice as an anticancer drug. The novel, rapid UHPLC-UV assay for ixazomib was developed and applied to the forced degradation study followed by HRMS identification of the main degradation products. Oxidative deboronation and hydrolysis of the amid bond were found to be the principal degradation pathways. The chemical standards of the main degradation products were prepared. The method was validated for the simultaneous assay of ixazomib and its degradation products within the concentration ranges of 2.50-100.00 µg/mL (ixazomib); 0.75-60.00 µg/mL (Impurity A and B) and 1.25-60.00 µg/mL (Impurity C). The stability study revealed that ixazomib in solution is: 1) relatively stable in neutral and acidic environments, 2) its decomposition is accelerated at higher pH, 3) it is sensitive to the effects of oxidants and light, and 4) the degradation of ixazomib follows the first-order kinetics under neutral, acidic, alkaline, and UV stress. Contrary, the solid substance of ixazomib citrate was relatively resistant to heat (70 °C), heat/humidity (70 °C/75 % RH), and UV irradiation for 24 h. This study presents the first MS-compatible UHPLC method for the quantification of ixazomib and its degradation products. Furthermore, it provides data about the inherent stability and kinetics of degradation of ixazomib in a solution that may be useful in further investigation of this drug, or the development of novel proteasome inhibitors based on the ixazomib structure.


Asunto(s)
Antineoplásicos , Glicina , Cromatografía Líquida de Alta Presión/métodos , Compuestos de Boro , Inhibidores de Proteasoma , Estabilidad de Medicamentos , Hidrólisis , Oxidación-Reducción
2.
Sci Rep ; 9(1): 4524, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872754

RESUMEN

Sobuzoxane (MST-16) is an approved anticancer agent, a pro-drug of bisdioxopiperazine analog ICRF-154. Due to the structural similarity of ICRF-154 to dexrazoxane (ICRF-187), MST-16 deserves attention as a cardioprotective drug. This study presents for the first time UHPLC-MS/MS assay of MST-16, ICRF-154 and its metabolite (EDTA-diamide) in cell culture medium, buffer, plasma and cardiac cells and provides data on MST-16 bioactivation under conditions relevant to investigation of cardioprotection of this drug. The analysis of these compounds that differ considerably in their lipophilicity was achieved on the Zorbax SB-Aq column using a mixture of aqueous ammonium formate and methanol as a mobile phase. The biological samples were either diluted or precipitated with methanol, which was followed by acidification for the assay of MST-16. The method was validated for determination of all compounds in the biological materials. The application of the method for analysis of samples from in vitro experiments provided important findings, namely, that (1) MST-16 is quickly decomposed in biological environments, (2) the cardiac cells actively metabolize MST-16, and (3) MST-16 readily penetrates into the cardiac cells and is converted into ICRF-154 and EDTA-diamide. These data are useful for the in-depth examination of the cardioprotective potential of this drug.


Asunto(s)
Antineoplásicos/análisis , Ácido Edético/química , Piperazinas/análisis , Razoxano/análogos & derivados , Animales , Antineoplásicos/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Razoxano/química , Razoxano/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...