Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 8(1): 78, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686079

RESUMEN

Using brain atlases to localize regions of interest is a requirement for making neuroscientifically valid statistical inferences. These atlases, represented in volumetric or surface coordinate spaces, can describe brain topology from a variety of perspectives. Although many human brain atlases have circulated the field over the past fifty years, limited effort has been devoted to their standardization. Standardization can facilitate consistency and transparency with respect to orientation, resolution, labeling scheme, file storage format, and coordinate space designation. Our group has worked to consolidate an extensive selection of popular human brain atlases into a single, curated, open-source library, where they are stored following a standardized protocol with accompanying metadata, which can serve as the basis for future atlases. The repository containing the atlases, the specification, as well as relevant transformation functions is available in the neuroparc OSF registered repository or https://github.com/neurodata/neuroparc .


Asunto(s)
Mapeo Encefálico/normas , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Metadatos
2.
Soc Neurosci ; 12(3): 253-267, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27072165

RESUMEN

Individuals differ in their ability to understand emotional information and apply that understanding to make decisions and solve problems effectively - a construct known as Emotional Intelligence (EI). While considerable evidence supports the importance of EI in social and occupational functioning, the neural underpinnings of this capacity are relatively unexplored. We used Tract-Based Spatial Statistics (TBSS) to determine the white matter correlates of EI as measured by the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Participants included 32 healthy adults (16 men; 16 women), aged 18-45 years. White matter integrity in key tracts was positively correlated with the Strategic Area branches of the MSCEIT (Understanding Emotions and Managing Emotions), but not the Experiential branches (Perceiving and Facilitating Emotions). Specifically, the Understanding Emotions branch was associated with greater fractional anisotropy (FA) within somatosensory and sensory-motor fiber bundles, particularly those of the left superior longitudinal fasciculus and corticospinal tract. Managing Emotions was associated with greater FA within frontal-affective association tracts including the anterior forceps and right uncinate fasciculus, along with frontal-parietal cingulum and interhemispheric corpus callosum tracts. These findings suggest that specific components of EI are directly related to the structural microarchitecture of major axonal pathways.


Asunto(s)
Encéfalo/diagnóstico por imagen , Inteligencia Emocional , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Pruebas de Inteligencia , Masculino , Persona de Mediana Edad , Pruebas Psicológicas , Adulto Joven
3.
Sleep ; 39(9): 1671-80, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27253770

RESUMEN

STUDY OBJECTIVES: Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. METHODS: A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). RESULTS: Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. CONCLUSIONS: This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important.


Asunto(s)
Luz , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Adolescente , Adulto , Atención/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen , Tiempo de Reacción/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...