Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 41(2): 221-31, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255731

RESUMEN

In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa Dirigida por ADN/química , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Sitios de Unión , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Uridina Trifosfato/química
2.
Science ; 318(5849): 456-9, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17947582

RESUMEN

Nonhomologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway required to maintain genome stability. Many prokaryotes possess a minimalist NHEJ apparatus required to repair DSBs during stationary phase, composed of two conserved core proteins, Ku and ligase D (LigD). The crystal structure of Mycobacterium tuberculosis polymerase domain of LigD mediating the synapsis of two noncomplementary DNA ends revealed a variety of interactions, including microhomology base pairing, mismatched and flipped-out bases, and 3' termini forming hairpin-like ends. Biochemical and biophysical studies confirmed that polymerase-induced end synapsis also occurs in solution. We propose that this DNA synaptic structure reflects an intermediate bridging stage of the NHEJ process, before end processing and ligation, with both the polymerase and the DNA sequence playing pivotal roles in determining the sequential order of synapsis and remodeling before end joining.


Asunto(s)
ADN Ligasas/química , Reparación del ADN , ADN Bacteriano/química , Mycobacterium tuberculosis/química , Secuencia de Aminoácidos , Secuencia de Bases , Cristalografía por Rayos X , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Bacteriano/metabolismo , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína
3.
Annu Rev Microbiol ; 61: 259-82, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17506672

RESUMEN

In eukaryotic cells, repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway is critical for genomic stability. A functionally homologous repair apparatus, composed of Ku and a multifunctional DNA ligase (LigD), has recently been identified in many prokaryotes. Eukaryotic organisms employ a large number of factors to repair breaks by NHEJ. In contrast, the bacterial NHEJ complex is a two-component system that, despite its relative simplicity, possesses all of the break-recognition, end-processing, and ligation activities required to facilitate the complex task of DSB repair. Here, we review recent discoveries on the structure and function of the bacterial NHEJ repair apparatus. In particular, we discuss the evolutionary origins of this DSB repair pathway, how the diverse activities within the prokaryotic end-joining complex cooperate to facilitate DSB repair, the physiological roles of bacterial NHEJ, and finally, the essential function of NHEJ in the life cycle of mycobacteriophage.


Asunto(s)
Bacterias/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Genética , Antígenos Nucleares/fisiología , ADN/metabolismo , ADN Ligasas/fisiología , Proteínas de Unión al ADN/fisiología , Autoantígeno Ku
4.
DNA Repair (Amst) ; 6(9): 1271-6, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17360246

RESUMEN

The physiological role of the non-homologous end-joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs) was examined in Mycobacterium smegmatis using DNA repair mutants (DeltarecA, Deltaku, DeltaligD, Deltaku/ligD, DeltarecA/ku/ligD). Wild-type and mutant strains were exposed to a range of doses of ionizing radiation at specific points in their life-cycle. NHEJ-mutant strains (Deltaku, DeltaligD, Deltaku/ligD) were significantly more sensitive to ionizing radiation (IR) during stationary phase than wild-type M. smegmatis. However, there was little difference in IR sensitivity between NHEJ-mutant and wild-type strains in logarithmic phase. Similarly, NHEJ-mutant strains were more sensitive to prolonged desiccation than wild-type M. smegmatis. A DeltarecA mutant strain was more sensitive to desiccation and IR during both stationary and especially in logarithmic phase, compared to wild-type strain, but it was significantly less sensitive to IR than the DeltarecA/ku/ligD triple mutant during stationary phase. These data suggest that NHEJ and homologous recombination are the preferred DSB repair pathways employed by M. smegmatis during stationary and logarithmic phases, respectively.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Reparación del ADN/efectos de la radiación , Desecación , Mycobacterium smegmatis/efectos de la radiación , Radiación Ionizante , Recombinación Genética/efectos de la radiación , Daño del ADN/efectos de la radiación , Mutación
5.
J Mol Biol ; 366(2): 391-405, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17174332

RESUMEN

Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown.


Asunto(s)
ADN Ligasas/química , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , Mycobacterium tuberculosis/enzimología , Secuencia de Bases , Sitios de Unión , ADN Ligasas/genética , ADN Ligasas/fisiología , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Nucleótidos de Desoxiguanina/metabolismo , Guanosina Trifosfato/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Ribonucleótidos/genética , Relación Estructura-Actividad , Transferasas/química , Difracción de Rayos X
6.
J Biol Chem ; 281(49): 37517-26, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17038309

RESUMEN

Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , ADN/metabolismo , Enzimas Reparadoras del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Humanos , Técnicas In Vitro , Complejos Multiproteicos , Mutación , Neurospora crassa/genética , Neurospora crassa/metabolismo , Filogenia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Levaduras/genética , Levaduras/metabolismo
7.
Mol Cell ; 23(5): 743-8, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16949369

RESUMEN

Ku-dependent nonhomologous end joining (NHEJ) is a double-strand break repair process conserved in all branches of cellular life but has not previously been implicated in the DNA metabolic processes of viruses. We identified Ku homologs in Corndog and Omega, two related mycobacteriophages of Mycobacterium smegmatis. These proteins formed homodimers and bound DNA ends in a manner identical to other Ku's and stimulated joining of ends by the host NHEJ DNA ligase (LigD). Omega and Corndog are unusual in having short 4 base cos ends that would not be expected to self-anneal and would therefore require NHEJ during phage genome circularization. Consistently, M. smegmatis LigD null strains are entirely and selectively unable to support infection by Corndog or Omega, with concomitant failure of genome circularization. These results establish a new paradigm for sequestration of the host cell NHEJ process by bacteriophage and provide a framework for understanding similar transactions in eukaryotic viral infections.


Asunto(s)
Genoma/genética , Micobacteriófagos/genética , Conformación de Ácido Nucleico , Recombinación Genética , Antígenos Nucleares/metabolismo , Proteínas Bacterianas/metabolismo , ADN Ligasas/metabolismo , ADN Bacteriano/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku , Mycobacterium smegmatis/citología , Mycobacterium smegmatis/virología , Saccharomyces cerevisiae/metabolismo
8.
J Mol Biol ; 351(3): 531-44, 2005 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-16023671

RESUMEN

A prokaryotic non-homologous end-joining (NHEJ) system for the repair of DNA double-strand breaks (DSBs), composed of a Ku homodimer (Mt-Ku) and a multidomain multifunctional ATP-dependent DNA ligase (Mt-Lig), has been described recently in Mycobacterium tuberculosis. Mt-Lig exhibits polymerase and nuclease activity in addition to DNA ligation activity. These functions were ascribed to putative polymerase, nuclease and ligase domains that together constitute a monomeric protein. Here, the separate polymerase, nuclease and ligase domains of Mt-Lig were cloned individually, over-expressed and the soluble proteins purified to homogeneity. The polymerase domain demonstrated DNA-dependent RNA primase activity, catalysing the synthesis of unprimed oligoribonucleotides on single-stranded DNA templates. The polymerase domain can also extend DNA in a template-dependent manner. This activity was eliminated when the catalytic aspartate residues were replaced with alanine. The ligase domain catalysed the sealing of nicked double-stranded DNA designed to mimic a DSB, consistent with the role of Mt-Lig in NHEJ. Deletion of the active-site lysine residue prevented the formation of an adenylated ligase complex and consequently thwarted ligation. The nuclease domain did not function independently as a 3'-5' exonuclease. DNA-binding assays revealed that both the polymerase and ligase domains bind DNA in vitro, the latter with considerably higher affinity. Mt-Ku directly stimulated the polymerase and nuclease activities of Mt-Lig. The polymerase domain bound Mt-Ku in vitro, suggesting it may recruit Mt-Lig to Ku-bound DNA in vivo. Consistent with these data, Mt-Ku stimulated the primer extension activity of the polymerase domain, suggestive of a functional interaction relevant to NHEJ-mediated DSB repair processes.


Asunto(s)
Reparación del ADN , Ligasas/química , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Ligasas/aislamiento & purificación , Ligasas/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
9.
Cell Cycle ; 4(5): 675-8, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15860957

RESUMEN

In eukaryotic cells, the repair of DNA double strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway is critical for genome stability. Until recently it was assumed that this DSB repair pathway was restricted to the eukarya. However, a functionally homologous prokaryotic NHEJ repair apparatus has now been identified and characterised. In contrast to the complex eukaryotic system, bacterial NHEJ appears to require only two proteins, Ku and a multifunctional DNA ligase, which form a two-component repair complex at the termini of DSBs. Together, these DNA repair factors possess all of the break-recognition, end-processing and ligation activities required to facilitate the complex task of DSB repair, both in vitro and in vivo. Our recent findings lay the foundation for understanding the molecular mechanisms that co-ordinate the processing and joining of DSBs by NHEJ in bacteria and also provides a conceptual framework for delineating the end-processing reactions in eukaryotes.


Asunto(s)
Bacterias/genética , Reparación del ADN/fisiología , ADN Bacteriano/genética , Animales , Antígenos Nucleares/metabolismo , Bacterias/metabolismo , Daño del ADN , ADN Ligasas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Autoantígeno Ku , Mycobacterium/genética , Mycobacterium/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/fisiología , Recombinación Genética , Saccharomyces cerevisiae/genética , Homología de Secuencia de Ácido Nucleico
10.
Science ; 306(5696): 683-5, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15499016

RESUMEN

In mammalian cells, repair of DNA double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ) is critical for genome stability. Although the end-bridging and ligation steps of NHEJ have been reconstituted in vitro, little is known about the end-processing reactions that occur before ligation. Recently, functionally homologous end-bridging and ligation activities have been identified in prokarya. Consistent with its homology to polymerases and nucleases, we demonstrate that DNA ligase D from Mycobacterium tuberculosis (Mt-Lig) possesses a unique variety of nucleotidyl transferase activities, including gap-filling polymerase, terminal transferase, and primase, and is also a 3' to 5' exonuclease. These enzyme activities allow the Mt-Ku and Mt-Lig proteins to join incompatible DSB ends in vitro, as well as to reconstitute NHEJ in vivo in yeast. These results demonstrate that prokaryotic Ku and ligase form a bona fide NHEJ system that encodes all the recognition, processing, and ligation activities required for DSB repair.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Ligasas/metabolismo , Reparación del ADN , ADN/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Daño del ADN , ADN Ligasas/química , ADN Ligasas/genética , ADN Nucleotidiltransferasas/química , ADN Nucleotidiltransferasas/metabolismo , ADN Primasa/química , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/química , Exonucleasas/metabolismo , Mutación , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Recombinación Genética , Saccharomyces cerevisiae/genética
11.
Biochim Biophys Acta ; 1655(1-3): 388-99, 2004 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-15100055

RESUMEN

Cytochrome cbb(3) oxidases are found almost exclusively in Proteobacteria, and represent a distinctive class of proton-pumping respiratory heme-copper oxidases (HCO) that lack many of the key structural features that contribute to the reaction cycle of the intensely studied mitochondrial cytochrome c oxidase (CcO). Expression of cytochrome cbb(3) oxidase allows human pathogens to colonise anoxic tissues and agronomically important diazotrophs to sustain N(2) fixation. We review recent progress in the biochemical characterisation of these distinctive oxidases that lays the foundation for understanding the basis of their proposed high affinity for oxygen, an apparent degeneracy in their electron input pathways and whether or not they acquired the ability to pump protons independently of other HCOs.


Asunto(s)
Bacterias/enzimología , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Bacterias/genética , Monóxido de Carbono/metabolismo , Electroquímica , Espectroscopía de Resonancia por Spin del Electrón , Complejo IV de Transporte de Electrones/genética , Expresión Génica , Genes Bacterianos , Hemo/química , Cinética , Ligandos , Bombas de Protones/química , Bombas de Protones/metabolismo , Pseudomonas stutzeri/enzimología , Pseudomonas stutzeri/genética
12.
Biochemistry ; 42(38): 11263-71, 2003 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-14503876

RESUMEN

Cytochrome cbb(3) oxidase, from Pseudomonas stutzeri, contains a total of five hemes, two of which, a b-type heme in the active site and a hexacoordinate c-type heme, can bind CO in the reduced state. By comparing the cbb(3) oxidase complex and the isolated CcoP subunit, which contains the ligand binding bishistidine-coordinated c-type heme, we have deconvoluted the contribution made by each center to CO binding. A combination of rapid mixing and flash photolysis experiments, coupled with computer simulations, reveals the kinetics of the reaction of c-type heme with CO to be complex as a result of the need to displace an endogenous axial ligand, a property shared with nonsymbiotic plant hemoglobins and some heme-based gas sensing domains. The recombination of CO with heme b(3), unlike all other heme-copper oxidases, including mitochondrial cytochrome c oxidase, is independent of ligand concentration. This observation suggests a very differently organized dinuclear center in which CO exchange between Cu(B) and heme b(3) is significantly enhanced, perhaps reflecting an important determinant of substrate affinity.


Asunto(s)
Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Hemo/análogos & derivados , Pseudomonas/enzimología , Sitios de Unión , Complejo IV de Transporte de Electrones/genética , Hemo/química , Cinética , Ligandos , Oxidación-Reducción , Fotólisis , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría/métodos
13.
J Biol Chem ; 277(35): 31474-83, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12070166

RESUMEN

Cytochrome cbb(3) oxidase, a member of the heme-copper oxidase superfamily, is characterized by its high affinity for oxygen while retaining the ability to pump protons. These attributes are central to its proposed role in the microaerobic metabolism of proteobacteria. We have completed the first detailed spectroscopic characterization of a cytochrome cbb(3) oxidase, the enzyme purified from Pseudomonas stutzeri. A combination of UV-visible and magnetic CD spectroscopies clearly identified four low-spin hemes and the high-spin heme of the active site. This heme complement is in good agreement with our analysis of the primary sequence of the ccoNOPQ operon and biochemical analysis of the complex. Near-IR magnetic CD spectroscopy revealed the unexpected presence of a low-spin bishistidine-coordinated c-type heme in the complex. This was shown to be one of two c-type hemes in the CcoP subunit by separately expressing the subunit in Escherichia coli. Separate expression of CcoP also allowed us to unambiguously assign each of the signals associated with low-spin ferric hemes present in the X-band EPR spectrum of the oxidized enzyme. This work both underpins future mechanistic studies on this distinctive class of bacterial oxidases and raises questions concerning the role of CcoP in electron delivery to the catalytic subunit.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Operón , Pseudomonas/enzimología , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Complejo IV de Transporte de Electrones/genética , Datos de Secuencia Molecular , Plásmidos , Conformación Proteica , Pseudomonas/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrofotometría , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA