Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 30(4): 103593, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36879672

RESUMEN

Schizophyllum commune Fr. is a wild macro fungus species, which is often used as a food source by the indigenous Kaili tribe along the Palu-Koro fault, Central Sulawesi, Indonesia. This fungus has a wide variety in terms of the weathered wood substrate as a place to grow and is found in almost all types of ecosystems. Although its diversity has been investigated, there is no identification of the weathered wood type as a substrate for growth. Some communities in Indonesia have not also known its potential and benefits. Therefore, this research aims to determine the wood type that grows S. commune fungus, ethnomycology, mineral composition, proximate, and phytochemical compounds. It was carried out using the descriptive explanatory approach and the fungi location as well as wood substrate sampling, was determined through the purposive sampling technique in forest areas, agroforestry, and community gardens along the Palu-Koro fault, Central Sulawesi. The samples of unknown wood types were through the collection of tree parts, namely twigs, leaves, flowers, and fruits, which were brought to Herbarium Celebense, Tadulako University for identification. Analysis of mineral content, proximate, and fungal phytochemical compounds was carried out based on the method according to the existing protocol. The results showed that 92 types of rotted wood found where the fungus S. commune grew, belonged to 36 families. The nutritional content is also good, although it varies based on the type of wood growing media. Therefore, it can be used and processed into various health-beneficial food products. This showed that domestication of the fungus needs to be carried out to support its commercialization as food and medicine in the future.

2.
Molecules ; 26(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34500664

RESUMEN

This study aims to identify and isolate the secondary metabolites of Zingiber officinale using GC-MS, preparative TLC, and LC-MS/MS methods, to evaluate the inhibitory potency on SARS-CoV-2 3 chymotrypsin-like protease enzyme, as well as to study the molecular interaction and stability by using docking and molecular dynamics simulations. GC-MS analysis suggested for the isolation of terpenoids compounds as major compounds on methanol extract of pseudostems and rhizomes. Isolation and LC-MS/MS analysis identified 5-hydro-7, 8, 2'-trimethoxyflavanone (9), (E)-hexadecyl-ferulate (1), isocyperol (2), N-isobutyl-(2E,4E)-octadecadienamide (3), and nootkatone (4) from the rhizome extract, as well as from the leaves extract with the absence of 9. Three known steroid compounds, i.e., spinasterone (7), spinasterol (8), and 24-methylcholesta-7-en-3ß-on (6), were further identified from the pseudostem extract. Molecular docking showed that steroids compounds 7, 8, and 6 have lower predictive binding energies (MMGBSA) than other metabolites with binding energy of -87.91, -78.11, and -68.80 kcal/mole, respectively. Further characterization on the single isolated compound by NMR showed that 6 was identified and possessed 75% inhibitory activity on SARS-CoV-2 3CL protease enzyme that was slightly different with the positive control GC376 (77%). MD simulations showed the complex stability with compound 6 during 100 ns simulation time.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/farmacología , Extractos Vegetales/farmacología , Zingiber officinale/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/ultraestructura , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/aislamiento & purificación , Inhibidores de Proteasa de Coronavirus/uso terapéutico , Cristalografía por Rayos X , Pruebas de Enzimas , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Pirrolidinas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Relación Estructura-Actividad , Ácidos Sulfónicos/farmacología
3.
J Basic Clin Physiol Pharmacol ; 32(4): 845-851, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34214356

RESUMEN

OBJECTIVES: This study aims to evaluate the antioxidant and antiviral potency of n-hexane, ethyl acetate and, water fractions of Begonia medicinalis Ardi & D.C.Thomas as well as to identify the chemical constituents. METHODS: Assays for antioxidant and antiviral activity (HIV-1) were carried out on MT-4 cells infected with HIV using the DPPH method and the determination of the cytopathic effect. Meanwhile, GC-MS was used to identify the chemical compounds. RESULTS: The determination of antioxidants showed that all fractions possessed potent activity with the IC50 ranging from 2.61 to 8.26 µg/mL. From the antiviral activity of MT-4 cells infected by HIV, the n-hexane fraction of B. medicinalis showed the most potency with the IC50 of 0.04 ± 0.05 µg/mL. It has less cytotoxicity (11.08 ± 4.60 µg/mL) affording the high selectivity index of 238.80. Furthermore, GC-MS analysis of n-hexane fraction found the major compound of carboxylic acid derivate with the area percentage of 76.4% and the presence of phenolic compounds (8.38%). Meanwhile, in water fraction, terpenoids were found in a higher concentration (10.05%) than others. CONCLUSIONS: Therefore, this study supports the application of B. medicinalis as a herbal medicine for antioxidant and antiviral.


Asunto(s)
Begoniaceae , Infecciones por VIH , Antioxidantes/farmacología , Antivirales/farmacología , Humanos , Extractos Vegetales/farmacología , Agua
4.
Heliyon ; 7(4): e06710, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33869876

RESUMEN

Alpinia eremochlamys K. Schum, Etlingera flexuosa A.D. Poulsen, and Etlingera acanthoides A.D. Poulsen are endemic Zingiberaceae plants from Central Sulawesi, Indonesia. This study is the first report on screening the potential antiviral activity of ethanol extracts of the leaves, pseudostems, and rhizomes parts on HIV-infected MT-4 cells and identifying chemical constituents by GC-MS. The plants were extracted by the maceration method using 96% ethanol as a solvent. The antiviral activity was measured using Viral-ToxGlo colorimetric method and using the extracts at concentrations ranging from 7.8 to 1000 µg/mL. GC-MS was used to identify the secondary metabolites of potential extracts. The results showed that ethanol extract of E. acanthoides rhizome was the most potent antiviral activity (IC50 of 1.74 ± 2.46 µg/mL) and less toxic on lymphocyte (MT-4) cells (CC50 of 204.90 ± 106.35 µg/mL), affording the highest value of selectivity index (SI) of 117.76. A. eremochlamys rhizomes also showed promising antiviral activity with IC50 of 64.18 ± 2.58 µg/mL and no toxicity on MT-4 cells affording a high SI value 19.05. Preliminary GC-MS identification showed the presence of terpenoids and fatty acids as major compounds. Zerumbone, ar-turmerone, caryophyllene, and caryophyllene oxide were also detected. Chemical constituents identified by GC-MS might be responsible for the antiviral activity of extracts, suggesting further isolation and antiviral testing of the purified compounds.

5.
J Pharm Bioallied Sci ; 12(Suppl 2): S763-S767, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33828375

RESUMEN

INTRODUCTION: Human immunodeficiency virus type-1 (HIV-1) that causes acquired immunodeficiency syndrome (AIDS) has become a worldwide health problem today. There are approximately 30 anti-HIV-1 drugs that have been used in the treatment of AIDS. However, effective anti HIV-1 agents with less side affect and high inhibition potency are still in demand. OBJECTIVE: The objective of this study was to identify the potential compounds from Zingiberaceae plants that might be active as anti-HIV-1 by molecular docking. MATERIALS AND METHODS: Molecular docking simulation was performed by using AutoDock 4.2 on Linux operation system. Docking protocol was validated by using root mean square deviation (RMSD) value using redocking and cross-docking methods. The reported metabolites from Zingiberaceae plants were docked on HIV-1 protease, integrase, and reverse transcriptase protein enzymes. RESULTS: The docking result showed that the genera of Zingiber, Etlingera, Alpinia, Hedychium, and Boesenbergia have potential metabolites that inhibit HIV protease, integrase, and reverse transcriptase enzymes by possessing lower docking energy than native ligand of amprenavir, raltegravir, and nevirapine. Among the metabolites, noralpindenoside B and alpindenoside A from Alpinia densespicata inhibited protease enzymes with the lowest docking energy of -18.02 and -17.90 kcal/mol, respectively. Meanwhile, panduratin E from Boesenbergia pandurata Roxb. and 5α,8α-epidioxyergosta-6,22-dien-3ß-ol from Etlingera elatior showed the lowest docking energy on integrase protein with docking energy of -11.97 and -11.41 kcal/mol, respectively. Pahangensin A from Alpinia pahangensis Ridley showed the lowest docking energy on reverse transcriptase enzyme with docking energy of -13.76 kcal/mol. CONCLUSION: The docking molecular study has identified the possible potential compounds from Zingiberaceae plants that might be used for anti-HIV-1 treatment. So, this study suggested further isolation and purification of the predicted compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...