Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Health Sci Rep ; 7(3): e1949, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463033

RESUMEN

Background: At the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, transfusion of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) emerged as a potential therapeutic strategy to help patients severely afflicted by COVID-19. The efficacy of CCP has been controversial as it depends on many variables pertaining to the plasma donor and the patient with COVID-19, for example, time of convalescence or symptoms onset. This feasibility and descriptive study aimed to assess the safety of multiple doses of CCP in mechanically ventilated, intubated patients with respiratory failure due to COVID-19. Methods: A cohort of 30 patients all experiencing severe respiratory failure and undergoing invasive mechanical ventilation in an intensive care unit, received up to five doses of 300-600 mL of CCP on alternate days (0, 2, 4, 6, and 8) until extubation, futility, or death. Results: Nineteen patients received five doses, seven received four, and four received two or three doses. At 28-day follow-up mark, 57% of patients recovered and were sent home, and the long-term mortality rate was 27%. Ten severe adverse events reported in the study were unrelated to CCP transfusion. Independent of the number of transfused doses, most patients had detectable levels of total and neutralizing antibodies in plasma. Conclusion: This study suggests that transfusion of multiple doses of CCP is safe. This strategy may represent a viable option for future studies, given the potential benefit of CCP transfusions during the early stages of infection in unvaccinated populations and in settings where monoclonal antibodies or antivirals are contraindicated or unavailable.

2.
Front Trop Dis ; 2: 769330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34851327

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major international public health concern. The World Health Organization (WHO) declared the pandemic of coronavirus disease 2019 (COVID-19) on March 11, 2020. In Panama, the first SARS-CoV-2 infection was confirmed on March 9, 2020, and the first fatal case associated to COVID-19 was reported on March 10. This report presents the case of a 44-year-old female who arrived at the hospital with a respiratory failure, five days after the first fatal COVID-19 case, and who was living in a region where hantavirus pulmonary syndrome cases caused by Choclo orthohantavirus (CHOV), are prevalent. Thus, the clinical personnel set a differential diagnosis to determine a respiratory disease caused by the endemic CHOV or the new pandemic SARS-CoV-2. This case investigation describes the first coinfection by SARS-CoV-2 and CHOV worldwide. PCR detected both viruses during early stages of the disease and the genomic sequences were obtained. The presence of antibodies was determined during the patient's hospitalization. After 23 days at the intensive care unit, the patient survived with no sequelae, and antibodies against CHOV and SARS-CoV-2 were still detectable 12 months after the disease. The detection of the coinfection in this patient highlights the importance, during a pandemic, of complementing the testing and diagnosis of the emergent agent, SARS-CoV-2, with other common endemic respiratory pathogens and other zoonotic pathogens, like CHOV, in regions where they are of public health concern.

3.
Int J Infect Dis ; 108: 588-591, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34107326

RESUMEN

We report a case of reinfection by SARS-CoV-2 with the second virus harboring amino acid changes in the Spike protein (141-143del, D215A, ins215AGY, L452R, D614G), orf1a, helicase, orf3a, and Nucleocapside. The virus associated with the reinfection, from an endemic lineage containing the S:L452R immune escape mutation, was circulating in Panama at the time.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Proteínas de la Nucleocápside , Reinfección , Glicoproteína de la Espiga del Coronavirus/genética
4.
Open Forum Infect Dis ; 7(9): ofaa359, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005697

RESUMEN

BACKGROUND: Human cases of Madariaga virus (MADV) infection were first detected during an outbreak in 2010 in eastern Panama, where Venezuelan equine encephalitis virus (VEEV) also circulates. Little is known about the long-term consequences of either alphavirus infection. METHODS: A follow-up study of the 2010 outbreak was undertaken in 2015. An additional survey was carried out 2 weeks after a separate 2017 alphavirus outbreak in a neighboring population in eastern Panama. Serological studies and statistical analyses were undertaken in both populations. RESULTS: Among the originally alphavirus-seronegative participants (n = 35 of 65), seroconversion was observed at a rate of 14.3% (95% CI, 4.8%-30.3%) for MADV and 8.6% (95% CI, 1.8%-23.1%) for VEEV over 5 years. Among the originally MADV-seropositive participants (n = 14 of 65), VEEV seroconversion occurred in 35.7% (95% CI, 12.8%-64.9%). In the VEEV-seropositive participants (n = 16 of 65), MADV seroconversion occurred in 6.3% (95% CI, 0.2%-30.2%). MADV seroreversion was observed in 14.3% (95% CI, 1.8%-42.8%) of those who were originally seropositive in 2010. VEEV seroconversion in the baseline MADV-seropositive participants was significantly higher than in alphavirus-negative participants. In the population sampled in 2017, MADV and VEEV seroprevalence was 13.2% and 16.8%, respectively. Memory loss, insomnia, irritability, and seizures were reported significantly more frequently in alphavirus-seropositive participants than in seronegative participants. CONCLUSIONS: High rates of seroconversion to MADV and VEEV over 5 years suggest frequent circulation of both viruses in Panama. Enhanced susceptibility to VEEV infection may be conferred by MADV infection. We provide evidence of persistent neurologic symptoms up to 5 years following MADV and VEEV exposure.

5.
Am J Trop Med Hyg ; 103(6): 2429-2437, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124532

RESUMEN

Madariaga virus (MADV) has recently been associated with severe human disease in Panama, where the closely related Venezuelan equine encephalitis virus (VEEV) also circulates. In June 2017, a fatal MADV infection was confirmed in a community of Darien Province. We conducted a cross-sectional outbreak investigation with human and mosquito collections in July 2017, where sera were tested for alphavirus antibodies and viral RNA. In addition, by applying a catalytic, force-of-infection (FOI) statistical model to two serosurveys from Darien Province in 2012 and 2017, we investigated whether endemic or epidemic alphavirus transmission occurred historically. In 2017, MADV and VEEV IgM seroprevalences were 1.6% and 4.4%, respectively; IgG antibody prevalences were MADV: 13.2%, VEEV: 16.8%, Una virus (UNAV): 16.0%, and Mayaro virus: 1.1%. Active viral circulation was not detected. Evidence of MADV and UNAV infection was found near households, raising questions about its vectors and enzootic transmission cycles. Insomnia was associated with MADV and VEEV infections, depression symptoms were associated with MADV, and dizziness with VEEV and UNAV. Force-of-infection analyses suggest endemic alphavirus transmission historically, with recent increased human exposure to MADV and VEEV in Aruza and Mercadeo, respectively. The lack of additional neurological cases suggests that severe MADV and VEEV infections occur only rarely. Our results indicate that over the past five decades, alphavirus infections have occurred at low levels in eastern Panama, but that MADV and VEEV infections have recently increased-potentially during the past decade. Endemic infections and outbreaks of MADV and VEEV appear to differ spatially in some locations of eastern Panama.


Asunto(s)
Encefalomielitis Equina Oriental/epidemiología , Encefalomielitis Equina Venezolana/epidemiología , Agricultores/estadística & datos numéricos , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Alphavirus/inmunología , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/fisiopatología , Animales , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/fisiopatología , Virus Chikungunya/inmunología , Niño , Preescolar , Estudios Transversales , Depresión/fisiopatología , Mareo/fisiopatología , Virus de la Encefalitis Equina del Este/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Oriental/inmunología , Encefalomielitis Equina Oriental/fisiopatología , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/fisiopatología , Enfermedades Endémicas , Epidemias , Fatiga/fisiopatología , Femenino , Vivienda/estadística & datos numéricos , Humanos , Inmunoglobulina G , Inmunoglobulina M , Masculino , Persona de Mediana Edad , Mosquitos Vectores/virología , Panamá/epidemiología , Virus de los Bosques Semliki/inmunología , Estudios Seroepidemiológicos , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Adulto Joven
6.
Am J Trop Med Hyg ; 101(6): 1212-1218, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31571566

RESUMEN

Alphaviruses (Togaviridae, Alphavirus) are arthropod-borne single-stranded RNA pathogens that cause febrile and neurologic disease in much of Latin America. However, many features of Alphavirus epidemiology remain unknown. In 2011, we undertook a cross-sectional study in Nueva Esperanza, an indigenous community in the Peruvian Amazon. Here, we present the first serologic evidence of Mayaro (MAYV), Venezuelan equine encephalitis (VEE) complex alphavirus, Una (UNAV), and Madariaga (MADV) viruses reported in humans (24%, 16%, 13%, and 1.5%, respectively) from an Amazonian indigenous community in Peru. Hunting activity and cohabiting with hunters were the main risk factors for Mayaro seroconversion, but only hunting was associated with UNAV seropositivity. Our results suggest that alphavirus infection in this region is common, but we highlight the high UNAV seroprevalence found and corroborate the low MADV prevalence reported in this region. Furthermore, MAYV-neutralizing antibodies were also detected in stored samples from wild animals (18%) hunted by Nueva Esperanza inhabitants and another mestizo community located close to Iquitos. Further serological surveys of VEE complex alphaviruses, UNAV, and MADV in wild animals and assessing the ability of the MAYV seropositive species to transmit the virus will be relevant.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/inmunología , Anticuerpos Antivirales/sangre , Pueblos Indígenas/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alphavirus , Infecciones por Alphavirus/etnología , Anticuerpos Neutralizantes/sangre , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Perú/epidemiología , Prevalencia , Factores de Riesgo , Seroconversión , Estudios Seroepidemiológicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...