Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(12): 1812-1828, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38369641

RESUMEN

BACKGROUND AND PURPOSE: To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH: EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3H]D-aspartate ([3H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS: In healthy mice, complement releases [3H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS: Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.


Asunto(s)
Complemento C1q , Complemento C3 , Encefalomielitis Autoinmune Experimental , Ácido Glutámico , Ratones Endogámicos C57BL , Sinaptosomas , Animales , Ácido Glutámico/metabolismo , Sinaptosomas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Complemento C1q/metabolismo , Complemento C3/metabolismo , Ratones , Sinapsis/metabolismo , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/metabolismo , Apoptosis , Astrocitos/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834353

RESUMEN

Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing the deleterious central consequences. In this review, we describe some of the available preclinical literature concerning the impact of antibodies recognizing NMDA and AMPA receptors in neurons. This review discusses the cellular events that would support the detrimental roles of the autoantibodies, also illustrating some contrasting findings that in our opinion deserve attention and further investigations before translating the preclinical observations to clinic.


Asunto(s)
N-Metilaspartato , Receptores AMPA , Humanos , Receptores AMPA/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Neuronas/metabolismo , Autoanticuerpos
4.
Cells ; 12(19)2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37830557

RESUMEN

This study provides evidence of the existence of presynaptic inhibitory sphingosine-1-phosphate receptor 1 (S1P1R) and facilitatory S1P3R in cortical nerve endings (synaptosomes) of healthy mice. The conclusion relies on the findings that (i) the S1P1R agonist CS-2100 (0.1-30 nM) inhibits the 12 mM KCl-evoked glutamate exocytosis (quantified as the release of [3H]D-aspartate) while the S1P3R allosteric agonist CYM-5541 potentiates it and (ii) these effects are inhibited by the S1P1R antagonist Ex 26 (30-300 nM) and the S1P3R antagonist TY-52156 (100-1000 nM), respectively. Confocal microscopy and western blot analysis confirmed the presence of S1P1R and S1P3R proteins in cortical glutamatergic synaptosomes, which were scarcely accessible to biotin in a biotinylation study. Then, we demonstrated that S1P1R and S1P3R densities and their release activity are amplified in cortical synaptosomes of mice suffering from experimental autoimmune encephalomyelitis (EAE), despite receptors maintain their preferential internal distribution. Receptor changes recover following chronic oral therapeutic FTY720 (0.03 mg/Kg/day). These results improve our knowledge of the role of presynaptic release-regulating S1P1Rs and S1P3Rs controlling glutamate transmission in the CNS also unravelling functional adaptations during EAE that recover following chronic FTY720. In a whole, these findings provide new information on the central neuroprotectant activities of FTY720.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Receptores de Esfingosina-1-Fosfato/uso terapéutico , Ácido Glutámico/metabolismo
5.
Neuropharmacology ; 237: 109639, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343628

RESUMEN

The organization and the role of receptor-receptor interaction (RRI) and metamodulation in physiological conditions have been extensively analyzed and discussed. In this Special Issue of Neuropharmacology, we review recent advances in the understanding of the RRI and the mechanisms underlying its adaptation that could be relevant to the etiopathogenesis of central neuropsychiatric disorders, as well as to the development of new therapeutic approaches to control the activity and to restore the physiological functions, posing the basis for new targeted pharmacological interventions.

6.
Neuropharmacology ; 234: 109570, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146939

RESUMEN

Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDA receptor-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDA receptor full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Asunto(s)
Receptores de N-Metil-D-Aspartato , Receptores Presinapticos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Presinapticos/metabolismo , Neuronas/metabolismo , Transducción de Señal
7.
Cells ; 11(19)2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36230998

RESUMEN

The glutamatergic nerve endings of a rat prefrontal cortex (PFc) possess presynaptic 5-HT2A heteroreceptors and mGlu2/3 autoreceptors, whose activation inhibits glutamate exocytosis, and is measured as 15 mM KCl-evoked [3H]D-aspartate ([3H]D-asp) release (which mimics glutamate exocytosis). The concomitant activation of the two receptors nulls their inhibitory activities, whereas blockade of the 5-HT2A heteroreceptors with MDL11,939 (1 µM) strengthens the inhibitory effect elicited by the mGlu2/3 receptor agonist LY329268 (1 µM). 5-HT2A receptor antagonists (MDL11,939; ketanserin; trazodone) amplify the impact of low (3 nM) LY379268. Clozapine (0.1-10 µM) mimics the 5-HT2A agonist (±) DOI and inhibits the KCl-evoked [3H]D-asp overflow in a MDL11,939-dependent fashion, but does not modify the (±) DOI-induced effect. mGlu2 and 5-HT2A proteins do not co-immunoprecipitate from synaptosomal lysates, nor does the incubation of PFc synaptosomes with MDL11,939 (1 µM) or clozapine (10 µM) modify the insertion of mGlu2 subunits in synaptosomal plasma membranes. In conclusion, 5-HT2A and mGlu2/3 receptors colocalize, but do not physically associate, in PFc glutamatergic terminals, where they functionally interact in an antagonist-like fashion to control glutamate exocytosis. The mGlu2/3-5-HT2A metamodulation could be relevant to therapy for central neuropsychiatric disorders, including schizophrenia, but also unveil cellular events accounting for their development, which also influence the responsiveness to drugs regimens.


Asunto(s)
Clozapina , Receptores de Glutamato Metabotrópico , Trazodona , Animales , Autorreceptores/metabolismo , Clozapina/farmacología , Ácido D-Aspártico/farmacología , Exocitosis/fisiología , Ácido Glutámico/metabolismo , Ketanserina/farmacología , Corteza Prefrontal/metabolismo , Ratas , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Serotonina , Trazodona/farmacología
8.
Front Nutr ; 9: 887378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118773

RESUMEN

Experimental evidence suggests that neuroinflammation is a key pathological event of many diseases affecting the nervous system. It has been well recognized that these devastating illnesses (e.g., Alzheimer's, Parkinson's, depression, and chronic pain) are multifactorial, involving many pathogenic mechanisms, reason why pharmacological treatments are unsatisfactory. The purpose of this study was to evaluate the efficacy of a vegetal mixture capable of offering a multiple approach required to manage the multifactoriality of neuroinflammation. A mixture composed of Zingiber officinale (150 mg kg-1), Echinacea purpurea (20 mg kg-1), and Centella asiatica (200 mg kg-1) was tested in a mouse model of systemic neuroinflammation induced by lipopolysaccharide (LPS, 1 mg kg-1). Repeated treatment with the vegetal mixture was able to completely counteract thermal and mechanical allodynia as reported by the Cold plate and von Frey tests, respectively, and to reduce the motor impairments as demonstrated by the Rota rod test. Moreover, the mixture was capable of neutralizing the memory loss in the Passive avoidance test and reducing depressive-like behavior in the Porsolt test, while no efficacy was shown in decreasing anhedonia as demonstrated by the Sucrose preference test. Finally, LPS stimulation caused a significant increase in the activation of glial cells, of the central complement proteins and of inflammatory cytokines in selected regions of the central nervous system (CNS), which were rebalanced in animals treated with the vegetal mixture. In conclusion, the vegetal mixture tested thwarted the plethora of symptoms evoked by LPS, thus being a potential candidate for future investigations in the context of neuroinflammation.

9.
Front Mol Neurosci ; 15: 937174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845604

RESUMEN

The circadian molecular machinery is a fine timekeeper with the capacity to harmonize physiological and behavioral processes with the external environment. This tight-knit regulation is coordinated by multiple cellular clocks across the body. In this review, we focus our attention on the molecular mechanisms regulated by the clock in different brain areas and within different cells of the central nervous system. Further, we discuss evidence regarding the role of circadian rhythms in the regulation of neuronal activity and neurotransmitter systems. Not only neurons, but also astrocytes and microglia actively participate in the maintenance of timekeeping within the brain, and the diffusion of circadian information among these cells is fine-tuned by neurotransmitters (e.g., dopamine, serotonin, and γ-aminobutyric acid), thus impacting on the core clock machinery. The bidirectional interplay between neurotransmitters and the circadian clockwork is fundamental in maintaining accuracy and precision in daily timekeeping throughout different brain areas. Deepening the knowledge of these correlations allows us to define the basis of drug interventions to restore circadian rhythms, as well as to predict the onset of drug treatment/side effects that might promote daily desynchronization. Furthermore, it may lead to a deeper understanding of the potential impacts of modulations in rhythmic activities on the pace of aging and provide an insight in to the pathogenesis of psychiatric diseases and neurodegenerative disorders.

10.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164175

RESUMEN

A new formulation of a pomegranate-peel extract (PEm) obtained by PUAE (Pulsed Ultrasound-Assisted Extraction) and titrated in both ellagic acid (EA) and punicalagin is proposed, characterized and then analyzed for potential health properties in mice suffering from the experimental autoimmune encephalomyelitis (EAE). PEm effects were compared to those elicited by a formulation containing EA (EAm). Control and EAE mice were chronically administered EAm and Pem dissolved in the drinking water, starting from the day 10 post-immunization (d.p.i.), with a "therapeutic" protocol to deliver daily 50 mg/kg of EA. Treated EAE mice did not limit their daily access to the beverage, nor did they show changes in body weight, but they displayed a significant amelioration of "in vivo" clinical symptoms. "Ex vivo" histochemical analysis showed that spinal-cord demyelination and inflammation in PEm and EAm-treated EAE mice at 23 ± 1 d.p.i. were comparable to those in the untreated EAE animals, while microglia activation (measured as Ionized Calcium Binding Adaptor 1, Iba1 staining) and astrocytosis (quantified as glial fibrillar acid protein, GFAP immunopositivity) significantly recovered, particularly in the gray matter. EAm and PEm displayed comparable efficiencies in controlling the spinal pathological cellular hallmarks in EAE mice, and this would support their delivery as dietary supplementation in patients suffering from multiple sclerosis (MS).


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Extractos Vegetales/uso terapéutico , Granada (Fruta) , Animales , Modelos Animales de Enfermedad , Ácido Elágico/uso terapéutico , Encefalomielitis Autoinmune Experimental/patología , Femenino , Taninos Hidrolizables/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Granada (Fruta)/química
11.
Methods Mol Biol ; 2417: 99-111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099794

RESUMEN

Synaptosomes are re-sealed pinched off nerve terminals that maintain all the main structural and functional features of the original structures and that are appropriate to study presynaptic events. Because of the discovery of new structural and molecular events that dictate the efficiency of transmitter release and of its receptor-mediated control in the central nervous system, the interest in this tissue preparation is continuously renewing. Most of these events have been already discussed in previous reviews, but few of them were not and deserve some comments since they could suggest new functional and possibly therapeutic considerations. Among them, the "metamodulation" of receptors represents an emerging aspect that dramatically increased the complexity of the presynaptic compartment, adding new insights to the role of presynaptic receptors as modulators of chemical synapses. Deciphering the mechanism of presynaptic metamodulation would permit indirect approaches to control the activity of presynaptic release-regulating receptors that are currently orphans of direct ligands/modulators, paving the road for the proposal of new therapeutic approaches for central neurological diseases.


Asunto(s)
Receptores Presinapticos , Sinaptosomas , Sistema Nervioso Central , Terminales Presinápticos , Receptores de N-Metil-D-Aspartato , Receptores Presinapticos/fisiología , Sinapsis
12.
Antioxidants (Basel) ; 10(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34829630

RESUMEN

Polyphenol ellagic acid (EA) possesses antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and cardio protection activities, making it an interesting multi-targeting profile. EA also controls the central nervous system (CNS), since it was proven to reduce the immobility time of mice in both the forced swimming and the tail-suspension tests, with an efficiency comparable to that of classic antidepressants. Interestingly, the anti-depressant-like effect was almost nulled by the concomitant administration of selective antagonists of the noradrenergic receptors, suggesting the involvement of these cellular targets in the central effects elicited by EA and its derivatives. By in silico and in vitro studies, we discuss how EA engages with human α2A-ARs and α2C-AR catalytic pockets, comparing EA behaviour with that of known agonists and antagonists. Structurally, the hydrophobic residues surrounding the α2A-AR pocket confer specificity on the intermolecular interactions and hence lead to favourable binding of EA in the α2A-AR, with respect to α2C-AR. Moreover, EA seems to better accommodate within α2A-ARs into the TM5 area, close to S200 and S204, which play a crucial role for activation of aminergic GPCRs such as the α2-AR, highlighting its promising role as a partial agonist. Consistently, EA mimics clonidine in inhibiting noradrenaline exocytosis from hippocampal nerve endings in a yohimbine-sensitive fashion that confirms the engagement of naïve α2-ARs in the EA-mediated effect.

13.
Front Pharmacol ; 12: 670158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366842

RESUMEN

Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate. To address the point, mouse cortical synaptosomes were incubated under basal and depolarizing (25 mM KCl-enriched medium) conditions, and extracellular vesicles were isolated from the synaptosomal supernatants to be characterized by dynamic light scattering, transmission electron microscopy, Western blot, and flow cytometry analyses. The structural and biochemical analysis unveiled that supernatants contain vesicles that have the size and the shape of exosomes, which were immunopositive for the exosomal markers TSG101, flotillin-1, CD63, and CD9. The marker content increased upon the exposure of nerve terminals to the high-KCl stimulus, consistent with an active release of the exosomes from the depolarized synaptosomes. High KCl-induced depolarization elicits the Ca2+-dependent exocytosis of glutamate. Interestingly, the depolarization-evoked release of exosomes from cortical synaptosomes also occurred in a Ca2+-dependent fashion, since the TSG101, CD63, and CD9 contents in the exosomal fraction isolated from supernatants of depolarized synaptosomes were significantly reduced when omitting external Ca2+ ions. Differently, (±)-baclofen (10 µM), which significantly reduced the glutamate exocytosis, did not affect the amount of exosomal markers, suggesting that the GABAB-mediated mechanism does not control the exosome release. Our findings suggest that the exposure of synaptosomes to a depolarizing stimulus elicits a presynaptic release of exosomes that occurs in a Ca2+-dependent fashion. The insensitivity to the presynaptic GABAB receptors, however, leaves open the question on whether the release of exosomes could be a druggable target for new therapeutic intervention for the cure of synaptopathies.

14.
Neuropharmacology ; 196: 108692, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34217776

RESUMEN

Group II metabotropic glutamate receptors (mGlu2 and mGlu3 receptors) shape mechanisms of methamphetamine addiction, but the individual role played by the two subtypes is unclear. We measured methamphetamine-induced conditioned place preference (CPP) and motor responses to single or repeated injections of methamphetamine in wild-type, mGlu2-/-, and mGlu3-/-mice. Only mGlu3-/-mice showed methamphetamine preference in the CPP test. Motor response to the first methamphetamine injection was dramatically reduced in mGlu2-/-mice, unless these mice were treated with the mGlu5 receptor antagonist, MTEP. In contrast, methamphetamine-induced sensitization was increased in mGlu3-/-mice compared to wild-type mice. Only mGlu3-/-mice sensitized to methamphetamine showed increases in phospho-ERK1/2 levels in the nucleus accumbens (NAc) and free radical formation in the NAc and medial prefrontal cortex. These changes were not detected in mGlu2-/-mice. We also measured a series of biochemical parameters related to the mechanism of action of methamphetamine in naïve mice to disclose the nature of the differential behavioural responses of the three genotypes. We found a reduced expression and activity of dopamine transporter (DAT) and vesicular monoamine transporter-2 in the NAc and striatum of mGlu2-/-and mGlu3-/-mice, whereas expression of the DAT adaptor, syntaxin 1A, was selectively increased in the striatum of mGlu3-/-mice. Methamphetamine-stimulated dopamine release in striatal slices was largely reduced in mGlu2-/-, but not in mGlu3-/-, mice. These findings suggest that drugs that selectively enhance mGlu3 receptor activity or negatively modulate mGlu2 receptors might be beneficial in the treatment of methamphetamine addiction and associated brain damage.


Asunto(s)
Trastornos Relacionados con Anfetaminas/metabolismo , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/efectos de los fármacos , Metanfetamina/farmacología , Receptores de Glutamato Metabotrópico/genética , Trastornos Relacionados con Anfetaminas/fisiopatología , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Fosforilación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Sintaxina 1/efectos de los fármacos , Sintaxina 1/metabolismo , Tiazoles/farmacología , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
15.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070785

RESUMEN

Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.


Asunto(s)
Sistema Nervioso Central/metabolismo , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Neuronas/metabolismo , Receptores de Somatostatina/genética , Somatostatina/genética , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Sistema Nervioso Central/citología , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Interneuronas/citología , Neuronas/citología , Potasio/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Transmisión Sináptica
16.
Front Immunol ; 12: 586521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717067

RESUMEN

Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.


Asunto(s)
Anticuerpos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Subunidades de Proteína/antagonistas & inhibidores , Receptores AMPA/antagonistas & inhibidores , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Corteza Cerebral/metabolismo , Complemento C1q/inmunología , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Receptores AMPA/química , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
17.
Br J Pharmacol ; 178(5): 1001-1017, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33347605

RESUMEN

The existence of presynaptic, release-regulating NMDA receptors in the CNS has been long matter of discussion. Most of the reviews dedicated to support this conclusion have preferentially focussed on the results from electrophysiological studies, paying little or no attention to the data obtained with purified synaptosomes, even though this experimental approach has been recognized as providing reliable information concerning the presence and the role of presynaptic release-regulating receptors in the CNS. To fill the gap, this review is dedicated to summarising the results from studies with synaptosomes published during the last 40 years, which support the existence of auto and hetero NMDA receptors controlling the release of transmitters such as glutamate, GABA, dopamine, noradrenaline, 5-HT, acetylcholine and peptides, in the CNS of mammals. The review also deals with the results from immunochemical studies in isolated nerve endings that confirm the functional observations.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Sinaptosomas , Animales , Dopamina , Terminaciones Nerviosas , Norepinefrina , Terminales Presinápticos , Receptores Presinapticos
18.
Neurobiol Stress ; 13: 100265, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344718

RESUMEN

Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D2 DA receptor signaling was reduced and A2A adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.

19.
Nutrients ; 12(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138077

RESUMEN

Anxiety disorders are common and complex psychiatric syndromes affecting a broad spectrum of patients. On top of that, we know that aging produces an increase in anxiety vulnerability and sedative consumption. Moreover, stress disorders frequently show a clear gender susceptibility. Currently, the approved pharmacological strategies have severe side effects such as hallucinations, addiction, suicide, insomnia, and loss of motor coordination. Dietary integration with supplements represents an intriguing strategy for improving the efficacy and the safety of synthetic anxiolytics. Accordingly, a recent article demonstrated that glyceric bud extracts from Tilia tomentosa Moench (TTBEs) exert effects that are consistent with anxiolytic activity. However, the effects of these compounds in vivo are unknown. To examine this question, we conducted behavioral analysis in mice. A total of 21 days of oral supplements (vehicle and TTBEs) were assessed by Light Dark and Hole Board tests in male and female mice (young, 3 months; old, 24 months). Interestingly, the principal component analysis revealed gender and age-specific behavioral modulations. Moreover, the diet integration with the botanicals did not modify the body weight gain and the daily intake of water. Our results support the use of TTBEs as dietary supplements for anxiolytic purposes and unveil age and gender-dependent responses.


Asunto(s)
Ansiolíticos/farmacología , Trastornos de Ansiedad/terapia , Suplementos Dietéticos , Extractos Vegetales/farmacología , Tilia/química , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Análisis de Componente Principal , Factores Sexuales
20.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066042

RESUMEN

Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes. Therefore, stimulating differentiation of OPCs into myelinating oligodendrocytes has become one of the main goals of new therapeutic approaches for MS. Different disease-modifying therapies targeting sphingosine-1-phosphate receptors (S1PRs) have been approved or are being developed to treat MS. Besides their immunomodulatory effects, growing evidence suggests that targeting S1PRs modulates mechanisms beyond immunomodulation, such as remyelination. In this context, this review focuses on the current understanding of S1PR modulators and their direct effect on OPCs and oligodendrocytes.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Oligodendroglía/metabolismo , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Humanos , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...