Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1988): 20221695, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475436

RESUMEN

Insect pests are a major challenge to smallholder crop production in sub-Saharan Africa (SSA), where access to synthetic pesticides, which are linked to environmental and health risks, is often limited. Biological control interventions could offer a sustainable solution, yet an understanding of their effectiveness is lacking. We used a meta-analysis approach to investigate the effectiveness of commonly used biocontrol interventions and botanical pesticides on pest abundance (PA), crop damage (CD), crop yield (Y) and natural enemy abundance (NEA) when compared with controls with no biocontrol and with synthetic pesticides. We also evaluated whether the magnitude of biocontrol effectiveness was affected by type of biocontrol intervention, crop type, pest taxon, farm type and landscape configuration. Overall, from 99 studies on 31 crops, we found that compared to no biocontrol, biocontrol interventions reduced PA by 63%, CD by over 50% and increased Y by over 60%. Compared to synthetic pesticides, biocontrol resulted in comparable PA and Y, while NEA was 43% greater. Our results also highlighted that the potential for biocontrol to be modulated by landscape configuration is a critical knowledge gap in SSA. We show that biocontrol represents an effective tool for smallholder farmers, which can maintain yields without associated negative pesticide effects. Furthermore, the evidence presented here advocates strongly for including biocontrol practices in national and regional agricultural policies.


Asunto(s)
Productos Agrícolas , Control Biológico de Vectores , África del Sur del Sahara
2.
Pest Manag Sci ; 75(9): 2346-2352, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31166075

RESUMEN

The entire process of agricultural and horticultural food production is unsustainable as practiced by current highly intensive industrial systems. Energy consumption is particularly intensive for cultivation, and for fertilizer production and its incorporation into soil. Provision of nitrogen contributes a major source of the greenhouse gas, N2 O. All losses due to pests, diseases and weeds are of food for which the carbon footprint has already been committed and so crop protection becomes an even greater concern. The rapidly increasing global need for food and the aggravation of associated problems by the effects of climate change create a need for new and sustainable crop protection. The overall requirement for sustainability is to remove seasonal inputs, and consequently all crop protection will need to be delivered via the seed or other planting material. Although genetic modification (GM) has transformed the prospects of sustainable crop protection, considerably more development is essential for the realisation of the full potential of GM and thereby consumer acceptability. Secondary plant metabolism offers wider and perhaps more robust new crop protection via GM and can be accomplished without associated yield loss because of the low level of photosynthate diverted for plant defence by secondary metabolism. Toxic mechanisms can continue to be targeted but exploiting non-toxic regulatory and signalling mechanisms should be the ultimate objective. There are many problems facing these proposals, both technical and social, and these are discussed but it is certainly not possible to stay where we are in terms of sustainability. The evidence for success is mounting and the technical opportunities from secondary plant metabolism are discussed here. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Producción de Cultivos/métodos , Productos Agrícolas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Metabolismo Secundario , Productos Agrícolas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
3.
Philos Trans R Soc Lond B Biol Sci ; 369(1639): 20120281, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24535389

RESUMEN

To reduce the need for seasonal inputs, crop protection will have to be delivered via the seed and other planting material. Plant secondary metabolism can be harnessed for this purpose by new breeding technologies, genetic modification and companion cropping, the latter already on-farm in sub-Saharan Africa. Secondary metabolites offer the prospect of pest management as robust as that provided by current pesticides, for which many lead compounds were, or are currently deployed as, natural products. Evidence of success and promise is given for pest management in industrial and developing agriculture. Additionally, opportunities for solving wider problems of sustainable crop protection, and also production, are discussed.


Asunto(s)
Agricultura/métodos , Agricultura/tendencias , Cruzamiento/métodos , Control Biológico de Vectores/métodos , Plantas Modificadas Genéticamente/genética , Crecimiento Demográfico , Semillas/química , Animales , Áfidos/química , Control Biológico de Vectores/tendencias , Feromonas/genética , Feromonas/metabolismo , Semillas/genética
4.
Philos Trans R Soc Lond B Biol Sci ; 369(1639): 20120284, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24535391

RESUMEN

Food insecurity is a chronic problem in Africa and is likely to worsen with climate change and population growth. It is largely due to poor yields of the cereal crops caused by factors including stemborer pests, striga weeds and degraded soils. A platform technology, 'push-pull', based on locally available companion plants, effectively addresses these constraints resulting in substantial grain yield increases. It involves intercropping cereal crops with a forage legume, desmodium, and planting Napier grass as a border crop. Desmodium repels stemborer moths (push), and attracts their natural enemies, while Napier grass attracts them (pull). Desmodium is very effective in suppressing striga weed while improving soil fertility through nitrogen fixation and improved organic matter content. Both companion plants provide high-value animal fodder, facilitating milk production and diversifying farmers' income sources. To extend these benefits to drier areas and ensure long-term sustainability of the technology in view of climate change, drought-tolerant trap and intercrop plants are being identified. Studies show that the locally commercial brachiaria cv mulato (trap crop) and greenleaf desmodium (intercrop) can tolerate long droughts. New on-farm field trials show that using these two companion crops in adapted push-pull technology provides effective control of stemborers and striga weeds, resulting in significant grain yield increases. Effective multi-level partnerships have been established with national agricultural research and extension systems, non-governmental organizations and other stakeholders to enhance dissemination of the technology with a goal of reaching one million farm households in the region by 2020. These will be supported by an efficient desmodium seed production and distribution system in eastern Africa, relevant policies and stakeholder training and capacity development.


Asunto(s)
Agricultura/métodos , Agricultura/tendencias , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Difusión de Innovaciones , Abastecimiento de Alimentos/métodos , Pobreza/prevención & control , África del Sur del Sahara , Grano Comestible/crecimiento & desarrollo , Fabaceae/crecimiento & desarrollo , Humanos , Poaceae/crecimiento & desarrollo , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...