Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 12(1): 96, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37072386

RESUMEN

The coupling of terahertz optical techniques to scattering-type scanning near-field microscopy (s-SNOM) has recently emerged as a valuable new paradigm for probing the properties of semiconductors and other materials on the nanoscale. Researchers have demonstrated a family of related techniques, including terahertz nanoscopy (elastic scattering, based on linear optics), time-resolved methods, and nanoscale terahertz emission spectroscopy. However, as with nearly all examples of s-SNOM since the technique's inception in the mid-1990s, the wavelength of the optical source coupled to the near-field tip is long, usually at energies of 2.5 eV or less. Challenges in coupling of shorter wavelengths (i.e., blue light) to the nanotip has greatly inhibited the study of nanoscale phenomena in wide bandgap materials such as Si and GaN. Here, we describe the first experimental demonstration of s-SNOM using blue light. With femtosecond pulses at 410 nm, we generate terahertz pulses directly from bulk silicon, spatially resolved with nanoscale resolution, and show that these signals provide spectroscopic information that cannot be obtained using near-infrared excitation. We develop a new theoretical framework to account for this nonlinear interaction, which enables accurate extraction of material parameters. This work establishes a new realm of possibilities for the study of technologically relevant wide-bandgap materials using s-SNOM methods.

2.
Opt Express ; 29(9): 13806-13814, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985109

RESUMEN

Terahertz technology has greatly benefited from the recent development and generalization of prototyping technologies such as 3D printing and laser machining. These techniques can be used to rapidly fabricate optical devices for applications in sensing, imaging and communications. In this paper, we introduce hot stamping, a simple inexpensive and rapid technique to form 2D metallic patterns that are suitable for many terahertz devices. We fabricate several example devices to illustrate the versatility of the technique, including metasurfaces made of arrays of split-ring resonators with resonances up to 550 GHz. We also fabricate a wire-grid polarizer for use as a polarizing beam splitter. The simplicity and low cost of this technique can help in rapid prototyping and realization of future terahertz devices.

3.
Opt Express ; 29(10): 15190-15198, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985223

RESUMEN

THz scattering-type scanning near-field microscopy (s-SNOM) has become a powerful technique for measuring carrier dynamics in nanoscale materials and structures. Changes in a material's local THz reflection or transmission can be correlated to changes in electrical conductivity. Here, we perform tip-based THz nano-imaging of subwavelength gold nanostructures and demonstrate image contrast unrelated to any spatially varying material properties. We show that the specific physical configuration of the gold structures can have a strong influence on local excitations which can obscure the sample's true dielectric response, even in cases where the relevant structures are far outside of the spatial region probed by the AFM tip.

4.
Opt Express ; 28(13): 18778-18789, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32672171

RESUMEN

We present an experimental and theoretical comparison of two different scattering-type scanning near-field optical microscopy (s-SNOM) based techniques in the terahertz regime; nanoscale reflection-type terahertz time-domain spectroscopy (THz nanoscopy) and nanoscale laser terahertz emission microscopy, or laser terahertz emission nanoscopy (LTEN). We show that complementary information regarding a material's charge carriers can be gained from these techniques when employed back-to-back. For the specific case of THz nanoscopy and LTEN imaging performed on a lightly p-doped InAs sample, we were able to record waveforms with detector signal components demodulated up to the 6th and the 10th harmonic of the tip oscillation frequency, and measure a THz near-field confinement down to 11 nm. A computational approach for determining the spatial confinement of the enhanced electric field in the near-field region of the conductive probe is presented, which manifests an effective "tip sharpening" in the case of nanoscale LTEN due to the alternative geometry and optical nonlinearity of the THz generation mechanism. Finally, we demonstrate the utility of the finite dipole model (FDM) in predicting the broadband scattered THz electric field, and present the first use of this model for predicting a near-field response from LTEN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...