Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Exp Clin Cancer Res ; 42(1): 197, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550785

RESUMEN

BACKGROUND: Autotaxin (ATX) is a secreted enzyme that converts lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA stimulates cell proliferation and migration and promotes wound repair following tissue damage. ATX levels are directly correlated with stage and grade in several human cancers. Several small molecule ATX inhibitors have been developed in recent years. IOA-289 is a potent ATX inhibitor, developed to treat cancers containing fibrosis. In this study, we tested IOA-289 treatment on different gastrointestinal tract tumor cell lines, in order to evaluate its effects on viability and motility. METHODS: To determine the effects on cell viability and proliferation of treatment with increasing concentrations of IOA-289, we used the crystal violet assay, a clonogenic assay in matrigel, and we evaluated the inhibitor's effect on formation of 3D spheroids in an in vitro model. The effect of IOA-289 on cell cycle phases was analysed with a redox dye reagent. Cell migration capacity was evaluated by wound healing assay and transwell migration assay. To evaluate the pro-apoptotic effect of the inhibitor, cells were stained with Annexin V and immunofluorescence and flow cytometry analysis were performed. An antibody array was also used, to discriminate, in various samples, the differential expression of 43 proteins involved in the apoptosis pathway. RESULTS: We found that IOA-289 is able to inhibit both growth and migration of gastrointestinal tract tumor cell lines, both in 2D (crystal violet assay) and 3D in vitro models (spheroid formation and clonogenic assay in matrigel). This effect is dose-dependent, and the drug is most effective when administered in FBS-free culture medium. The inhibitory effect on cell growth is due to a pro-apoptotic effect of IOA-289. Staining with FITC-conjugated Annexin V showed that IOA-289 induced a dose-dependent increase in fluorescence following incubation for 24 h, and apoptotic cells were also distinguished in flow cytometry using Annexin/PI staining. The antibody array shows that treatment with IOA-289 causes the increased expression of several pro-apoptotic proteins in all tested cell lines. CONCLUSIONS: These results indicate that IOA-289 may be an effective drug for the treatment of tumors of the gastrointestinal tract, particularly those characterized by a high degree of fibrosis.


Asunto(s)
Neoplasias Gastrointestinales , Inhibidores de Fosfodiesterasa , Humanos , Anexina A5 , Línea Celular Tumoral , Fibrosis , Neoplasias Gastrointestinales/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas , Inhibidores de Fosfodiesterasa/farmacología , Evaluación Preclínica de Medicamentos
3.
Hepatology ; 78(6): 1742-1754, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789652

RESUMEN

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy, with increasing incidence worldwide and limited therapeutic options. Aberrant protein glycosylation is a hallmark of cancer. Here, we thoroughly investigated the possible involvement of fucosylation in cholangiocarcinogenesis. APPROACH AND RESULTS: We discovered that the levels of global fucosylation and members of the fucosylation pathway are ubiquitously upregulated in human iCCA tissues compared to nontumorous surrounding livers and normal biliary cells. In addition, total fucosylation levels correlate with poor patients' prognosis. Furthermore, fucosylation inhibition following 6-alkynylfucose (6AF) administration triggered a dose-dependent decrease in the proliferation and migration of iCCA cell lines. Notably, adding fucose to the cell medium annulled these effects. At the molecular level, 6AF administration or small interfering RNA-mediated silencing of GDP-L-fucose synthetase (FX) and the GDP-fucose transmembrane transporter (SLC35C1), both pivotal players of cellular fucosylation, decreased NOTCH activity, NOTCH1/Jagged1 interaction, NOTCH receptors, and related target genes in iCCA cell lines. In the same cells, EGFR, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and Bcl-xL protein levels diminished, whereas IκBα (a critical cellular NF-κB inhibitor) increased after FX/SLC35C1 knockdown or 6AF administration. In the chick chorioallantoic membrane assay, 6AF treatment profoundly suppresses the growth of iCCA cells. CONCLUSIONS: Elevated global fucosylation characterizes human iCCA, contributing to cell growth and migration through the upregulation of the NOTCH and EGFR/NF-κB pathways. Thus, aberrant fucosylation is a novel pathogenetic player and a potential therapeutic target for human iCCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , FN-kappa B/metabolismo , Glicosilación , Pronóstico , Fucosa/metabolismo , Colangiocarcinoma/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/patología , Receptores ErbB/metabolismo
4.
J Exp Clin Cancer Res ; 41(1): 331, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443822

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant tumor characterized by an intensive desmoplastic reaction due to the exaggerated presence of the extracellular (ECM) matrix components. Liver fibroblasts close to the tumor, activated by transforming growth factor (TGF)-ß1 and expressing high levels of α-smooth muscle actin (α-SMA), become cancer-associated fibroblasts (CAFs). CAFs are deputed to produce and secrete ECM components and crosstalk with cancer cells favoring tumor progression and resistance to therapy. Overexpression of Notch signaling is implicated in CCA development and growth. The study aimed to determine the effectiveness of the Notch inhibitor, Crenigacestat, on the surrounding microenvironment of iCCA. METHODS: We investigated Crenigacestat's effectiveness in a PDX model of iCCA and human primary culture of CAFs isolated from patients with iCCA. RESULTS: In silico analysis of transcriptomic profiling from PDX iCCA tissues treated with Crenigacestat highlighted "liver fibrosis" as one of the most modulated pathways. In the iCCA PDX model, Crenigacestat treatment significantly (p < 0.001) reduced peritumoral liver fibrosis. Similar results were obtained in a hydrodynamic model of iCCA. Bioinformatic prediction of the upstream regulators related to liver fibrosis in the iCCA PDX treated with Crenigacestat revealed the involvement of the TGF-ß1 pathway as a master regulator gene showing a robust connection between TGF-ß1 and Notch pathways. Consistently, drug treatment significantly (p < 0.05) reduced TGF-ß1 mRNA and protein levels in tumoral tissue. In PDX tissues, Crenigacestat remarkably inhibited TGF-ß signaling and extracellular matrix protein gene expression and reduced α-SMA expression. Furthermore, Crenigacestat synergistically increased Gemcitabine effectiveness in the iCCA PDX model. In 31 iCCA patients, TGF-ß1 and α-SMA were upregulated in the tumoral compared with peritumoral tissues. In freshly isolated CAFs from patients with iCCA, Crenigacestat significantly (p < 0.001) inhibited Notch signaling, TGF-ß1 secretion, and Smad-2 activation. Consequently, Crenigacestat also inactivated CAFs reducing (p < 0.001) α-SMA expression. Finally, CAFs treated with Crenigacestat produced less (p < 005) ECM components such as fibronectin, collagen 1A1, and collagen 1A2. CONCLUSIONS: Notch signaling inhibition reduces the peritumoral desmoplastic reaction in iCCA, blocking the TGF-ß1 canonical pathway.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Factor de Crecimiento Transformador beta1 , Ecosistema , Hígado , Conductos Biliares Intrahepáticos , Fibrosis , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...