Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 33(18): 10155-10180, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37540164

RESUMEN

Crosstalk between conflicting response codes contributes to interference in dual-tasking, an effect exacerbated in advanced age. Here, we investigated (i) brain activity correlates of such response-code conflicts, (ii) activity modulations by individual dual-task performance and related cognitive abilities, (iii) task-modulated connectivity within the task network, and (iv) age-related differences in all these aspects. Young and older adults underwent fMRI while responding to the pitch of tones through spatially mapped speeded button presses with one or two hands concurrently. Using opposing stimulus-response mappings between hands, we induced conflict between simultaneously activated response codes. These response-code conflicts elicited activation in key regions of the multiple-demand network. While thalamic and parietal areas of the conflict-related network were modulated by attentional, working-memory and task-switching abilities, efficient conflict resolution in dual-tasking mainly relied on increasing supplementary motor activity. Older adults showed non-compensatory hyperactivity in left superior frontal gyrus, and higher right premotor activity was modulated by working-memory capacity. Finally, connectivity between premotor or parietal seed regions and the conflict-sensitive network was neither conflict-specific nor age-sensitive. Overall, resolving dual-task response-code conflict recruited substantial parts of the multiple-demand network, whose activity and coupling, however, were only little affected by individual differences in task performance or age.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición/fisiología , Memoria a Corto Plazo/fisiología , Atención/fisiología , Imagen por Resonancia Magnética
2.
Psychol Res ; 87(1): 260-280, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35122495

RESUMEN

Difficulties in performing two tasks at once can arise from several sources and usually increase in advanced age. Tasks with concurrent bimodal (e.g., manual and oculomotor) responding to single stimuli consistently revealed crosstalk between conflicting response codes as a relevant source. However, how this finding translates to unimodal (i.e., manual only) response settings and how it is affected by age remains open. To address this issue, we had young and older adults respond to high- or low-pitched tones with one (single task) or both hands concurrently (dual task). Responses were either compatible or incompatible with the pitch. When responses with the same level of compatibility were combined in dual-task conditions, their response codes were congruent to each other, whereas combining a compatible and an incompatible response created mutually incongruent (i.e., conflicting) response codes, potentially inducing detrimental crosstalk. Across age groups, dual-task costs indeed were overall highest with response-code incongruency. In these trials, compatible responses exhibited higher costs than incompatible ones, even after removing trials with strongly synchronized responses. This underadditive cost asymmetry argues against mutual crosstalk as the sole source of interference and corroborates notions of strategic prioritization of limited processing capacity based on mapping-selection difficulty. As expected, the effects of incongruent response codes were found to be especially deleterious in older adults, supporting assumptions of age-related deficits in multiple-action control at the level of task-shielding. Overall, our results suggest that aging is linked to higher response confusability and less efficient flexibility for capacity sharing in dual-task settings.


Asunto(s)
Envejecimiento , Desempeño Psicomotor , Anciano , Humanos , Envejecimiento/psicología , Movimientos Oculares , Mano , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adulto Joven , Factores de Edad
3.
Cortex ; 132: 441-459, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33065515

RESUMEN

Deterioration in working memory capacity (WMC) has been associated with normal aging, but it remains unknown how age affects the relationship between WMC and connectivity within functional brain networks. We therefore examined the predictability of WMC from fMRI-based resting-state functional connectivity (RSFC) within eight meta-analytically defined functional brain networks and the connectome in young and old adults using relevance vector machine in a robust cross-validation scheme. Particular brain networks have been associated with mental functions linked to WMC to a varying degree and are associated with age-related differences in performance. Comparing prediction performance between the young and old sample revealed age-specific effects: In young adults, we found a general unpredictability of WMC from RSFC in networks subserving WM, cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory, whereas in older adults each network significantly predicted WMC. Moreover, both WM-related and WM-unrelated networks were differently predictive in older adults with low versus high WMC. These results indicate that the within-network functional coupling during task-free states is specifically related to individual task performance in advanced age, suggesting neural-level reorganization. In particular, our findings support the notion of a decreased segregation of functional brain networks, deterioration of network integrity within different networks and/or compensation by reorganization as factors driving associations between individual WMC and within-network RSFC in older adults. Thus, using multivariate pattern regression provided novel insights into age-related brain reorganization by linking cognitive capacity to brain network integrity.


Asunto(s)
Conectoma , Memoria a Corto Plazo , Anciano , Encéfalo/diagnóstico por imagen , Cognición , Humanos , Imagen por Resonancia Magnética , Adulto Joven
5.
Brain Struct Funct ; 223(6): 2699-2719, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29572625

RESUMEN

Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta-analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC-personality relations should not be considered independently of gender.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Personalidad/fisiología , Descanso , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Metaanálisis como Asunto , Red Nerviosa/diagnóstico por imagen , Oxígeno/sangre , Adulto Joven
6.
Hum Brain Mapp ; 38(12): 5845-5858, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28876500

RESUMEN

Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiopatología , Enfermedad de Parkinson/fisiopatología , Esquizofrenia/fisiopatología , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Procesos Mentales/fisiología , Metaanálisis como Asunto , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Descanso , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Máquina de Vectores de Soporte , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...