Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38545623

RESUMEN

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

2.
Sci Rep ; 12(1): 15931, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151245

RESUMEN

Testosterone is a hormone that plays a key role in carbohydrate, fat, and protein metabolism. Testosterone deficiency is associated with multiple comorbidities, e.g., metabolic syndrome and type 2 diabetes. Despite its importance in many metabolic pathways, the mechanisms by which it controls metabolism are not fully understood. The present study investigated the short-term metabolic changes of pharmacologically induced castration and, subsequently, testosterone supplementation in healthy young males. Thirty subjects were submitted to testosterone depletion (TD) followed by testosterone supplementation (TS). Plasma samples were collected three times corresponding to basal, low, and restored testosterone levels. An untargeted metabolomics study was performed by liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to monitor the metabolic changes induced by the altered hormone levels. Our results demonstrated that TD was associated with major metabolic changes partially restored by TS. Carnitine and amino acid metabolism were the metabolic pathways most impacted by variations in testosterone. Furthermore, our results also indicated that LH and FSH might strongly alter the plasma levels of indoles and lipids, especially glycerophospholipids and sphingolipids. Our results demonstrated major metabolic changes induced by low testosterone that may be important for understanding the mechanisms behind the association of testosterone deficiency and its comorbidities.


Asunto(s)
Infertilidad Masculina , Metaboloma , Testosterona , Aminoácidos/metabolismo , Carbohidratos , Carnitina , Suplementos Dietéticos , Hormona Folículo Estimulante , Glicerofosfolípidos , Humanos , Indoles , Infertilidad Masculina/inducido químicamente , Lípidos , Hormona Luteinizante , Masculino , Esfingolípidos , Testosterona/farmacología
3.
Life (Basel) ; 12(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35330141

RESUMEN

Polycystic ovaries (PCO) contain antral follicles that arrest growing around 3-11 mm in diameter, perturbing the dominant follicle's selection and the subsequent ovulatory process. Proteomic alterations of PCO follicular fluid (FF) (i.e., microenvironment in which the oocyte develops until ovulation) have been studied from large follicles in connection with oocyte pickup during ovarian stimulation. The present study aimed to detect proteomic alterations in FF from unstimulated human small antral follicles (hSAF) obtained from PCO. After performing deep-sequencing label-free proteomics on 10 PCO and 10 non-PCO FF samples from unstimulated hSAF (4.6-9.8 mm), 1436 proteins were identified, of which 115 were dysregulated in PCO FF samples. Pathways and processes related to the immune system, inflammation, and oxidative stress appeared to be upregulated in PCO, while extracellular matrix receptors interactions, the collagens-containing extracellular matrix, and the regulation of signaling were downregulated. The secreted proteins SFRP1, THBS4, and C1QC significantly decreased their expression in PCO FF, and this downregulation was suggested to affect future oocyte competence. In conclusion, our study revealed, for the first time, evidence of proteomic alterations occurring in the FF of PCO hSAF that may be related to the dysfunction of follicular growth and subsequent oocyte competence.

4.
Life (Basel) ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34833152

RESUMEN

Long term effect of testosterone (T) deficiency impairs metabolism and is associated with muscle degradation and metabolic disease. The association seems to have a bidirectional nature and is not well understood. The present study aims to investigate the early and unidirectional metabolic effect of induced T changes by measuring fasting amino acid (AA) levels in a human model, in which short-term T alterations were induced. We designed a human model of 30 healthy young males with pharmacologically induced T changes, which resulted in three time points for blood collection: (A) baseline, (B) low T (3 weeks post administration of gonadotropin releasing hormone antagonist) and (C) restored T (2 weeks after injection of T undecanoate). The influence of T on AAs was analyzed by spectrophotometry on plasma samples. Levels of 9 out of 23 AAs, of which 7 were essential AAs, were significantly increased at low T and are restored upon T supplementation. Levels of tyrosine and phenylalanine were most strongly associated to T changes. Short-term effect of T changes suggests an increased protein breakdown that is restored upon T supplementation. Fasting AA levels are able to monitor the early metabolic changes induced by the T fluctuations.

6.
Hum Reprod ; 36(3): 756-770, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33313811

RESUMEN

STUDY QUESTION: Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER: The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY: Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION: Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION: A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS: This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S): The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Folículo Ovárico , Proteoma , Adulto , Femenino , Líquido Folicular , Humanos , Oocitos , Oogénesis
7.
J Transl Med ; 18(1): 343, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887625

RESUMEN

BACKGROUND: Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. METHODS: A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. RESULTS: In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≥ 2 or ≤ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09-14.3; P = 0.037). CONCLUSION: Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Conductos Biliares Intrahepáticos , Biomarcadores de Tumor , Colangiocarcinoma/diagnóstico , Formaldehído , Humanos , Espectrometría de Masas , Adhesión en Parafina , Pronóstico , Trombospondinas
8.
Clin Transl Med ; 10(2): e106, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32536039

RESUMEN

BACKGROUND: A gel-free proteomic approach was utilized to perform in-depth tissue protein profiling of lung adenocarcinoma (ADC) and normal lung tissues from early and advanced stages of the disease. The long-term goal of this study is to generate a large-scale, label-free proteomics dataset from histologically well-classified lung ADC that can be used to increase further our understanding of disease progression and aid in identifying novel biomarkers. METHODS AND RESULTS: Cases of early-stage (I-II) and advanced-stage (III-IV) lung ADCs were selected and paired with normal lung tissues from 22 patients. The histologically and clinically stratified human primary lung ADCs were analyzed by liquid chromatography-tandem mass spectrometry. From the analysis of ADC and normal specimens, 4863 protein groups were identified. To examine the protein expression profile of ADC, a peak area-based quantitation method was used. In early- and advanced-stage ADC, 365 and 366 proteins were differentially expressed, respectively, between normal and tumor tissues (adjusted P-value < .01, fold change ≥ 4). A total of 155 proteins were dysregulated between early- and advanced-stage ADCs and 18 were suggested as early-specific stage ADC. In silico functional analysis of the upregulated proteins in both tumor groups revealed that most of the enriched pathways are involved in mRNA metabolism. Furthermore, the most overrepresented pathways in the proteins that were unique to ADC are related to mRNA metabolic processes. CONCLUSIONS: Further analysis of these data may provide an insight into the molecular pathways involved in disease etiology and may lead to the identification of biomarker candidates and potential targets for therapy. Our study provides potential diagnostic biomarkers for lung ADC and novel stage-specific drug targets for rational intervention.

10.
Cancers (Basel) ; 12(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213878

RESUMEN

Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.

11.
Cell Biol Toxicol ; 36(3): 261-272, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31599373

RESUMEN

In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.


Asunto(s)
Melanoma/genética , Metástasis de la Neoplasia/genética , Proteómica/métodos , Adulto , Biomarcadores de Tumor/genética , Femenino , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Anotación de Secuencia Molecular/métodos , Anotación de Secuencia Molecular/tendencias , Pronóstico , Proteoma/genética , Proteoma/metabolismo , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno
12.
Scand J Clin Lab Invest ; 80(1): 25-31, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31738571

RESUMEN

Testosterone deficiency in males is associated with serious comorbidities such as cardiovascular disease, diabetes type two, and also an increased risk of premature death. The pathogenetic mechanism behind this association, however, has not yet been clarified and is potentially bidirectional. The aim of this clinical trial was to gain insight into the short-term effect of changes in testosterone on blood analytes in healthy young men. Thirty healthy young male volunteers were recruited and monitored in our designed human model. Blood sampling was performed prior to and 3 weeks after pharmacological castration with a gonadotropin-releasing hormone antagonist. Subsequently, testosterone replacement with 1000 mg testosterone undecanoate was given and additional blood samples were collected 2 weeks later. The alterations in the levels of 37 routine biomarkers were statistically analysed. Eight biomarkers changed significantly in a similar manner as testosterone between the time points (e.g. prostate specific antigen, creatinine and magnesium), whereas seven other markers changed in the inverse manner as testosterone, including sexual hormone-binding globulin, urea, aspartate aminotransferase and alanine aminotransferase. Most of our results were supported by data from other studies. The designed controlled human model yielded changes in known biomarkers suggesting that low testosterone has a negative effect on health in young healthy men.


Asunto(s)
Biomarcadores/sangre , Testosterona/análogos & derivados , Testosterona/sangre , Adulto , Alanina Transaminasa/sangre , Aspartato Aminotransferasas/sangre , Hormona Folículo Estimulante/sangre , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Voluntarios Sanos , Humanos , Libido/efectos de los fármacos , Hormona Luteinizante/sangre , Masculino , Antígeno Prostático Específico/sangre , Testosterona/efectos adversos , Testosterona/deficiencia , Testosterona/farmacología , Factores de Tiempo
13.
Cancers (Basel) ; 11(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835364

RESUMEN

In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter- and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma.

14.
Transl Res ; 212: 67-79, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295437

RESUMEN

Pancreatic cancer is an aggressive malignancy that carries a high mortality rate. A major contributor to the poor outcome is the lack of effective molecular markers. The purpose of this study was to develop protein markers for improved prognostication and noninvasive diagnosis. A mass spectrometry (MS)-based discovery approach was applied to pancreatic cancer tissues and healthy pancreas. In the verification phase, extracellular proteins with differential expression were further quantified in targeted mode using parallel reaction monitoring (PRM). Next, a tissue microarray (TMA) cohort including 140 pancreatic cancer resection specimens was constructed, in order to validate protein expression status and investigate potential prognostic implications. The levels of protein candidates were finally assessed in a prospective series of 110 serum samples in an accredited clinical laboratory using the automated Cobas system. Protein sequencing with nanoliquid chromatography tandem MS (nano-LC-MS/MS) and targeted PRM identified alpha-1-acid glycoprotein 1 (AGP1) as an upregulated protein in pancreatic cancer tissue. Using TMA and immunohistochemistry, AGP1 expression was significantly associated with shorter overall survival (HR = 2.22; 95% CI 1.30-3.79, P = 0.004). Multivariable analysis confirmed the results (HR = 1.87; 95% CI 1.08-3.24, P = 0.026). Circulating levels of AGP1 yielded an area under the curve (AUC) of 0.837 for the discrimination of resectable pancreatic cancer from healthy controls. Combining AGP1 with CA 19-9 enhanced the diagnostic performance, with an AUC of 0.963. This study suggests that AGP1 is a novel prognostic biomarker in pancreatic cancer tissue. Serum AGP1 levels may be useful as part of a biomarker panel for early detection of pancreatic cancer but further studies are needed.


Asunto(s)
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica , Orosomucoide/metabolismo , Neoplasias Pancreáticas/metabolismo , Regulación hacia Arriba , Adenocarcinoma/genética , Anciano , Carcinoma Ductal Pancreático/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Orosomucoide/genética , Neoplasias Pancreáticas/genética , Pronóstico
15.
Mol Cell Endocrinol ; 495: 110522, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31356852

RESUMEN

Follicular fluid (FF) acts as a vehicle for paracrine signalling between somatic cells of the follicle and the oocyte. To investigate changes in the protein composition of FF during ovulation, we conducted a prospective cohort study including 25 women undergoing fertility treatment. Follicular fluid was aspirated either before or 12, 17, 32 or 36 h after induction of ovulation (five patients per time point). Liquid chromatography-mass spectrometry was used to identify and quantify FF proteins. In total, 400 proteins were identified and the levels of 40 proteins changed significantly across ovulation, evaluated by analysis of covariance (adjusted p < 0.05) and on-off expression patterns. The majority peaked after 12-17 h, e.g., AREG (p < 0.0001), TNFAIP6 (p < 0.0001), and LDHB (p = 0.0316), while some increased to peak after 36 h e.g., ACPP (p < 0.0001), TIMP1 (p < 0.0001) and SERPINE1 (p = 0.0002). Collectively, this study highlights proteins and pathways of importance for ovulation and oocyte competence in humans.


Asunto(s)
Líquido Folicular/metabolismo , Ovulación/fisiología , Proteómica , Adulto , Femenino , Ontología de Genes , Humanos , Análisis de Componente Principal , Mapeo de Interacción de Proteínas , Adulto Joven
16.
Neurobiol Dis ; 130: 104509, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31207390

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder. Depositions of amyloid ß peptide (Aß) and tau protein are among the major pathological hallmarks of AD. Aß and tau burden follows predictable spatial patterns during the progression of AD. Nevertheless, it remains obscure why certain brain regions are more vulnerable than others; to investigate this and dysregulated pathways during AD progression, a mass spectrometry-based proteomics study was performed. METHODS: In total 103 tissue samples from regions early (entorhinal and parahippocampal cortices - medial temporal lobe (MTL)) and late affected (temporal and frontal cortices - neocortex) by tau pathology were subjected to label-free quantitative proteomics analysis. RESULTS: Considering dysregulated proteins during AD progression, the majority (625 out of 737 proteins) was region specific, while some proteins were shared between regions (101 proteins altered in two areas and 11 proteins altered in three areas). Analogously, many dysregulated pathways during disease progression were exclusive to certain regions, but a few pathways altered in two or more areas. Changes in protein expression indicate that synapse loss occurred in all analyzed regions, while translation dysregulation was preponderant in entorhinal, parahippocampal and frontal cortices. Oxidative phosphorylation impairment was prominent in MTL. Differential proteomic analysis of brain areas in health state (controls) showed higher metabolism and increased expression of AD-related proteins in the MTL compared to the neocortex. In addition, several proteins that differentiate brain regions in control tissue were dysregulated in AD. CONCLUSIONS: This work provides the comparison of proteomic changes in brain regions affected by tau pathology at different stages of AD. Although we identified commonly regulated proteins and pathways during disease advancement, we found that the dysregulated processes are predominantly region specific. In addition, a distinct proteomic signature was found between MTL and neocortex in healthy subjects that might be related to AD vulnerability. These findings highlight the need for investigating AD's cascade of events throughout the whole brain and studies spanning more brain areas are required to better understand AD etiology and region vulnerability to disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteoma , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Encéfalo/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Proteómica
17.
EBioMedicine ; 43: 282-294, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30982764

RESUMEN

BACKGROUND: Pancreatic cancer is a heterogenous disease with a poor prognosis. This study aimed to discover and validate prognostic tissue biomarkers in pancreatic cancer using a mass spectrometry (MS) based proteomics approach. METHODS: Global protein sequencing of fresh frozen pancreatic cancer and healthy pancreas tissue samples was conducted by MS to discover potential protein biomarkers. Selected candidate proteins were further verified by targeted proteomics using parallel reaction monitoring (PRM). The expression of biomarker candidates was validated by immunohistochemistry in a large tissue microarray (TMA) cohort of 141 patients with resectable pancreatic cancer. Kaplan-Meier and Cox proportional hazard modelling was used to investigate the prognostic utility of candidate protein markers. FINDINGS: In the initial MS-discovery phase, 165 proteins were identified as potential biomarkers. In the subsequent MS-verification phase, a panel of 45 candidate proteins was verified by the development of a PRM assay. Brain acid soluble protein 1 (BASP1) was identified as a new biomarker candidate for pancreatic cancer possessing largely unknown biological and clinical functions and was selected for further analysis. Importantly, bioinformatic analysis indicated that BASP1 interacts with Wilms tumour protein (WT1) in pancreatic cancer. TMA-based immunohistochemistry analysis showed that BASP1 was an independent predictor of prolonged survival (HR 0.468, 95% CI 0.257-0.852, p = .013) and predicted favourable response to adjuvant chemotherapy, whereas WT1 indicated a worsened survival (HR 1.636, 95% CI 1.083-2.473, p = .019) and resistance to chemotherapy. Interaction analysis showed that patients with negative BASP1 and high WT1 expression had the poorest outcome (HR 3.536, 95% CI 1.336-9.362, p = .011). INTERPRETATION: We here describe an MS-based proteomics platform for developing biomarkers for pancreatic cancer. Bioinformatic analysis and clinical data from our study suggest that BASP1 and its putative interaction partner WT1 can be used as biomarkers for predicting outcomes in pancreatic cancer patients.


Asunto(s)
Biomarcadores de Tumor , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Proteínas Represoras/metabolismo , Anciano , Anciano de 80 o más Años , Cromatografía Liquida , Biología Computacional/métodos , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias Pancreáticas/diagnóstico , Pronóstico , Modelos de Riesgos Proporcionales , Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem
18.
Cell Biol Toxicol ; 35(4): 293-332, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30900145

RESUMEN

Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.


Asunto(s)
Melanoma/patología , Melanoma/terapia , Investigación Biomédica Traslacional/métodos , Bancos de Muestras Biológicas/tendencias , Biomarcadores de Tumor , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Humanos , Imidazoles/farmacología , Melanoma/metabolismo , Estadificación de Neoplasias , Oximas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Piridonas/farmacología , Pirimidinonas/farmacología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Melanoma Cutáneo Maligno
19.
Sci Rep ; 9(1): 5154, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914758

RESUMEN

Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.


Asunto(s)
Genómica , Melanoma/genética , Melanoma/patología , Proteómica , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estimación de Kaplan-Meier , Análisis de los Mínimos Cuadrados , Masculino , Melanoma/diagnóstico , Persona de Mediana Edad , Análisis de Componente Principal , Pronóstico , Modelos de Riesgos Proporcionales , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Anal Biochem ; 559: 51-54, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30145218

RESUMEN

Cell line-based proteomics studies are susceptible to intrinsic biological variation that contributes to increasing false positive claims; most of the methods that follow these changes offer a limited understanding of the biological system. We applied a quantitative proteomic strategy (iTRAQ) to detect intrinsic protein variation across SH-SY5Y cell culture replicates. More than 95% of the quantified proteins presented a coefficient of variation (CV) < 20% between biological replicates and the variable proteins, which included cytoskeleton, cytoplasmic and housekeeping proteins, are widely reported in proteomic studies. We recommend this approach as an additional quality control before starting any proteomic experiment.


Asunto(s)
Técnicas de Cultivo de Célula , Espectrometría de Masas , Neuroblastoma/patología , Biología Computacional , Humanos , Proteínas de Neoplasias/análisis , Proteómica , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...