Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2615: 173-188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807792

RESUMEN

Reminiscent of their evolutionary origin, mitochondria contain their own genome (mtDNA) compacted into the mitochondrial chromosome or nucleoid (mt-nucleoid). Many mitochondrial disorders are characterized by disruption of mt-nucleoids, either by direct mutation of genes involved in mtDNA organization or by interfering with other vital proteins for mitochondrial function. Thus, changes in mt-nucleoid morphology, distribution, and structure are a common feature in many human diseases and can be exploited as an indicator of cellular fitness. Electron microscopy provides the highest possible resolution that can be achieved, delivering spatial and structural information about all cellular structures. Recently, the ascorbate peroxidase APEX2 has been used to increase transmission electron microscopy (TEM) contrast by inducing diaminobenzidine (DAB) precipitation. DAB has the ability to accumulate osmium during classical EM sample preparation and, due to its high electron density, provides strong contrast for TEM. Among the nucleoid proteins, the mitochondrial helicase Twinkle fused with APEX2 has been successfully used to target mt-nucleoids, providing a tool to visualize these subcellular structures with high contrast and with the resolution of an electron microscope. In the presence of H2O2, APEX2 catalyzes the polymerization of DAB, generating a brown precipitate that can be visualized in specific regions of the mitochondrial matrix. Here, we provide a detailed protocol to generate murine cell lines expressing a transgenic variant of Twinkle, suitable to target and visualize mt-nucleoids. We also describe all the necessary steps to validate the cell lines prior to electron microscopy imaging and offer examples of anticipated results.


Asunto(s)
Peróxido de Hidrógeno , Mitocondrias , Animales , Ratones , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/genética , Animales Modificados Genéticamente , ADN Helicasas/metabolismo , Microscopía Electrónica de Transmisión , Proteínas Mitocondriales/metabolismo , Endonucleasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Enzimas Multifuncionales
2.
Autophagy ; 19(9): 2609-2610, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36691806

RESUMEN

Mitophagy and its variants are considered important salvage pathways to remove dysfunctional mitochondria. Non-canonical mitophagy, independent of autophagosome formation and including endosomal-dependent mitophagy, operate upon specific injury. In a recent paper, we describe a new mechanism where, upon mtDNA damage, mitochondrial nucleoids are eliminated via an endosomal-mitophagy pathway. Using proximity proteomics, we identified the proteins required for elimination of mutated mitochondrial nucleoids from the mitochondrial matrix. Among them, ATAD3 and SAMM50 control cristae architecture and nucleoid interaction, necessary for mtDNA extraction. In the mitochondrial outer membrane, SAMM50 coordinates with the retromer protein VPS35 to sequester mtDNA in endosomes and guide them toward elimination, thus avoiding the activation of an exacerbated immune response. Here, we summarize our findings and examine how this newly described pathway contributes to our understanding of mtDNA quality control.


Asunto(s)
ADN Mitocondrial , Mitofagia , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitofagia/genética , Autofagia , Mitocondrias/metabolismo , Endosomas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Nat Commun ; 13(1): 6704, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344526

RESUMEN

Understanding the mechanisms governing selective turnover of mutation-bearing mtDNA is fundamental to design therapeutic strategies against mtDNA diseases. Here, we show that specific mtDNA damage leads to an exacerbated mtDNA turnover, independent of canonical macroautophagy, but relying on lysosomal function and ATG5. Using proximity labeling and Twinkle as a nucleoid marker, we demonstrate that mtDNA damage induces membrane remodeling and endosomal recruitment in close proximity to mitochondrial nucleoid sub-compartments. Targeting of mitochondrial nucleoids is controlled by the ATAD3-SAMM50 axis, which is disrupted upon mtDNA damage. SAMM50 acts as a gatekeeper, influencing BAK clustering, controlling nucleoid release and facilitating transfer to endosomes. Here, VPS35 mediates maturation of early endosomes to late autophagy vesicles where degradation occurs. In addition, using a mouse model where mtDNA alterations cause impairment of muscle regeneration, we show that stimulation of lysosomal activity by rapamycin, selectively removes mtDNA deletions without affecting mtDNA copy number, ameliorating mitochondrial dysfunction. Taken together, our data demonstrates that upon mtDNA damage, mitochondrial nucleoids are eliminated outside the mitochondrial network through an endosomal-mitophagy pathway. With these results, we unveil the molecular players of a complex mechanism with multiple potential benefits to understand mtDNA related diseases, inherited, acquired or due to normal ageing.


Asunto(s)
ADN Mitocondrial , Membranas Mitocondriales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia
4.
J Cachexia Sarcopenia Muscle ; 13(4): 2132-2145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765148

RESUMEN

BACKGROUND: Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS: We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS: K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS: Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.


Asunto(s)
Sarcopenia , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/patología , Regeneración , Sarcopenia/patología
5.
Front Mol Biosci ; 8: 676187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295920

RESUMEN

Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, as well as in rare neurological disorders, including Huntington's disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.

7.
Invest Ophthalmol Vis Sci ; 61(12): 14, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33057669

RESUMEN

Purpose: The purpose of this study was to gain insights on the pathogenesis of chronic progressive external ophthalmoplegia, thus we investigated the vulnerability of five extra ocular muscles (EOMs) fiber types to pathogenic mitochondrial DNA deletions in a mouse model expressing a mutated mitochondrial helicase TWINKLE. Methods: Consecutive pairs of EOM sections were analyzed by cytochrome C oxidase (COX)/succinate dehydrogenase (SDH) assay and fiber type specific immunohistochemistry (type I, IIA, IIB, embryonic, and EOM-specific staining). Results: The mean average of COX deficient fibers (COX-) in the recti muscles of mutant mice was 1.04 ± 0.52% at 12 months and increased with age (7.01 ± 1.53% at 24 months). A significant proportion of these COX- fibers were of the fast-twitch, glycolytic type IIB (> 50% and > 35% total COX- fibers at 12 and 24 months, respectively), whereas embryonic myosin heavy chain-expressing fibers were almost completely spared. Furthermore, the proportion of COX- fibers in the type IIB-rich retractor bulbi muscle was > 2-fold higher compared to the M. recti at both 12 (2.6 ± 0.78%) and 24 months (20.85 ± 2.69%). Collectively, these results demonstrate a selective vulnerability of type IIB fibers to mitochondrial DNA (mtDNA) deletions in EOMs and retractor bulbi muscle. We also show that EOMs of mutant mice display histopathological abnormalities, including altered fiber type composition, increased fibrosis, ragged red fibers, and infiltration of mononucleated nonmuscle cells. Conclusions: Our results point to the existence of fiber type IIB-intrinsic factors and/or molecular mechanisms that predispose them to increased generation, clonal expansion, and detrimental effects of mtDNA deletions.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/patología , Fibras Musculares de Contracción Rápida/patología , Músculos Oculomotores/patología , Animales , Complejo IV de Transporte de Electrones/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/enzimología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Cadenas Pesadas de Miosina/metabolismo , Músculos Oculomotores/enzimología , Oftalmoplejía Externa Progresiva Crónica/etiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Succinato Deshidrogenasa/metabolismo
8.
EMBO J ; 39(9): e102731, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32149416

RESUMEN

Mitochondria house anabolic and catabolic processes that must be balanced and adjusted to meet cellular demands. The RNA-binding protein CLUH (clustered mitochondria homolog) binds mRNAs of nuclear-encoded mitochondrial proteins and is highly expressed in the liver, where it regulates metabolic plasticity. Here, we show that in primary hepatocytes, CLUH coalesces in specific ribonucleoprotein particles that define the translational fate of target mRNAs, such as Pcx, Hadha, and Hmgcs2, to match nutrient availability. Moreover, CLUH granules play signaling roles, by recruiting mTOR kinase and the RNA-binding proteins G3BP1 and G3BP2. Upon starvation, CLUH regulates translation of Hmgcs2, involved in ketogenesis, inhibits mTORC1 activation and mitochondrial anabolic pathways, and promotes mitochondrial turnover, thus allowing efficient reprograming of metabolic function. In the absence of CLUH, a mitophagy block causes mitochondrial clustering that is rescued by rapamycin treatment or depletion of G3BP1 and G3BP2. Our data demonstrate that metabolic adaptation of liver mitochondria to nutrient availability depends on a compartmentalized CLUH-dependent post-transcriptional mechanism that controls both mTORC1 and G3BP signaling and ensures survival.


Asunto(s)
Mitocondrias Hepáticas/fisiología , Proteínas Mitocondriales/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Células COS , Chlorocebus aethiops , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mitofagia , Proteínas de Unión al ARN/genética
10.
Sci Rep ; 7: 42993, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220846

RESUMEN

GDAP1 is an outer mitochondrial membrane protein involved in Charcot-Marie-Tooth (CMT) disease. Lack of GDAP1 gives rise to altered mitochondrial networks and endoplasmic reticulum (ER)-mitochondrial interactions resulting in a decreased ER-Ca2+ levels along with a defect on store-operated calcium entry (SOCE) related to a misallocation of mitochondria to subplasmalemmal sites. The defect on SOCE is mimicked by MCU silencing or mitochondrial depolarization, which prevent mitochondrial calcium uptake. Ca2+ release from de ER and Ca2+ inflow through SOCE in neuroblastoma cells result in a Ca2+-dependent upregulation of respiration which is blunted in GDAP1 silenced cells. Reduced SOCE in cells with CMT recessive missense mutations in the α-loop of GDAP1, but not dominant mutations, was associated with smaller SOCE-stimulated respiration. These cases of GDAP1 deficiency also resulted in a decreased ER-Ca2+ levels which may have pathological implications. The results suggest that CMT neurons may be under energetic constraints upon stimulation by Ca2+ mobilization agonists and point to a potential role of perturbed mitochondria-ER interaction related to energy metabolism in forms of CMT caused by some of the recessive or null mutations of GDAP1.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Línea Celular Tumoral , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Mutación Missense , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Oligomicinas/farmacología , Consumo de Oxígeno/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
11.
J Cell Biol ; 216(3): 675-693, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28188211

RESUMEN

Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal-neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.


Asunto(s)
Mitocondrias/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Citosol/metabolismo , Citosol/fisiología , Metabolismo Energético/fisiología , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Metabolismo/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Interferencia de ARN/fisiología
12.
PLoS Genet ; 11(4): e1005115, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25860513

RESUMEN

Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.


Asunto(s)
Axones/metabolismo , Señalización del Calcio , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Axones/patología , Axones/fisiología , Canales de Calcio/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Citoesqueleto/metabolismo , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Proteínas del Tejido Nervioso/metabolismo
13.
Hum Mol Genet ; 24(1): 213-29, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25168384

RESUMEN

Mutations in the GDAP1 gene cause different forms of Charcot-Marie-Tooth (CMT) disease, and the primary clinical expression of this disease is markedly variable in the dominant inheritance form (CMT type 2K; CMT2K), in which carriers of the GDAP1 p.R120W mutation can display a wide range of clinical severity. We investigated the JPH1 gene as a genetic modifier of clinical expression variability because junctophilin-1 (JPH1) is a good positional and functional candidate. We demonstrated that the JPH1-GDAP1 cluster forms a paralogon and is conserved in vertebrates. Moreover, both proteins play a role in Ca(2+) homeostasis, and we demonstrated that JPH1 is able to restore the store-operated Ca(2+) entry (SOCE) activity in GDAP1-silenced cells. After the mutational screening of JPH1 in a series of 24 CMT2K subjects who harbour the GDAP1 p.R120W mutation, we characterized the JPH1 p.R213P mutation in one patient with a more severe clinical picture. JPH1(p.R213P) cannot rescue the SOCE response in GDAP1-silenced cells. We observed that JPH1 colocalizes with STIM1, which is the activator of SOCE, in endoplasmic reticulum-plasma membrane puncta structures during Ca(2+) release in a GDAP1-dependent manner. However, when GDAP1(p.R120W) is expressed, JPH1 seems to be retained in mitochondria. We also established that the combination of GDAP1(p.R120W) and JPH1(p.R213P) dramatically reduces SOCE activity, mimicking the effect observed in GDAP1 knock-down cells. In summary, we conclude that JPH1 and GDAP1 share a common pathway and depend on each other; therefore, JPH1 can contribute to the phenotypical consequences of GDAP1 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Enfermedad de Charcot-Marie-Tooth/metabolismo , Evolución Molecular , Genes Modificadores , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias/metabolismo , Mutación , Proteínas de Neoplasias/metabolismo , Filogenia , Molécula de Interacción Estromal 1
14.
J Cell Biol ; 207(2): 213-23, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25349259

RESUMEN

Mitochondrial function requires coordination of two genomes for protein biogenesis, efficient quality control mechanisms, and appropriate distribution of the organelles within the cell. How these mechanisms are integrated is currently not understood. Loss of the Clu1/CluA homologue (CLUH) gene led to clustering of the mitochondrial network by an unknown mechanism. We find that CLUH is coregulated both with genes encoding mitochondrial proteins and with genes involved in ribosomal biogenesis and translation. Our functional analysis identifies CLUH as a cytosolic messenger ribonucleic acid (RNA; mRNA)-binding protein. RNA immunoprecipitation experiments followed by next-generation sequencing demonstrated that CLUH specifically binds a subset of mRNAs encoding mitochondrial proteins. CLUH depletion decreased the levels of proteins translated by target transcripts and caused mitochondrial clustering. A fraction of CLUH colocalizes with tyrosinated tubulin and can be detected close to mitochondria, suggesting a role in regulating transport or translation of target transcripts close to mitochondria. Our data unravel a novel mechanism linking mitochondrial biogenesis and distribution.


Asunto(s)
Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Biosíntesis de Proteínas , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/genética , Tubulina (Proteína)/análisis , Tubulina (Proteína)/metabolismo
15.
Front Cell Neurosci ; 8: 124, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860428

RESUMEN

Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG) are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca(2+) homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-ßgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.

16.
Neurobiol Dis ; 55: 140-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542510

RESUMEN

GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Interferencia de ARN/fisiología , Adenosina Trifosfato/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular Transformada , Quelantes/farmacología , Proteína Coatómero/metabolismo , Citoesqueleto/metabolismo , Ácido Egtácico/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/microbiología , Inhibidores Enzimáticos/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/genética , Receptores de Superficie Celular/metabolismo , Transfección , Proteínas de Unión al GTP rab/metabolismo
17.
J Biol Chem ; 286(42): 36777-86, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21890626

RESUMEN

Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G(2)/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with ß-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G(2)/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease.


Asunto(s)
División Celular , Fase G2 , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Prueba de Complementación Genética , Células HeLa , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
18.
Adv Exp Med Biol ; 652: 129-37, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20225023

RESUMEN

Mitochondrial dysfunction plays a relevant role in the pathogenesis of neurological and neuromuscular diseases. Mitochondria may be involved as a primary defect of either the mtDNA or nuclear genome encoded subunits of the respiratory chain. These organelles have also been directly involved in the pathogenesis of Mendelian neurodegenerative disorders caused by mutations in nuclear-encoded proteins targeted to mitochondria, such as Friedreich ataxia, hereditary spastic paraplegia, or some monogenic forms of Parkinson disease. In addition, mitochondria also participate in the pathogenic mechanisms affecting neurodegenerative disorders such Huntington disease or amyotrophic lateral sclerosis. Cell death in neurodegeneration associated with neurological diseases usually occurs by apoptosis being the most common route the intrinsic mitochondria pathway. Along with regulation of apoptosis, mitochondria also modulate cell pathogenesis by means of energy production, reactive oxygen species (ROS) generation, and calcium buffering. Mitochondria form dynamic tubular networks that continually change their shape and move throughout the cell. Here we review the critical role of mitochondria in monogenic neuromuscular disorders, especially inherited peripheral neuropathies caused by abnormal mitochondrial network dynamics. In yeast, at least three proteins are required for mitochondrial fusion, Fzo1, Ugo1 and Mgm1. The human counterparts of Fzo1p and Mgm1p, MFN1/MFN2 and OPA1 respectively, are related to human disease. Mutations in the MFN2 gene cause the most frequent form of autosomal dominant axonal Charcot-Marie-Tooth disease, CMT2A. Mutations in OPA1 cause autosomal dominant optic atrophy (ADOA). For the opposite process of mitochondrial fission, four proteins are at least involved in yeast. Very recently a mutation in the DRP1 gene (the human homologue of yeast Dnm1) has been reported in an infant with a syndrome with encephalopathy, optic atrophy and lactic acidosis. GDAP1 has been recently related to the mitochondrial fission in mammalian cells and, interestingly, mutations in the GDAP1 gene are the cause of the most common form of autosomal recessive CMT, either axonal or demyelinating. These and other disorders are the most recent instances of disease related with mitochondrial abnormal motility, fusion and fission. We propose that the pathomechanisms underlying these disorders also include a complex relationship between mitochondrial dynamics and transport across the axon.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/etiología , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Humanos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...