Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 4(6): 1782-1793, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34927010

RESUMEN

The energy intake exceeding energy expenditure (EE) results in a positive energy balance, leading to storage of excess energy and weight gain. Here, we investigate the potential of a newly synthesized compound as an inducer of EE for the management of diet-induced obesity and insulin resistance. Xanthohumol (XN), a prenylated flavonoid from hops, was used as a precursor for the synthesis of a pyrazole derivative tested for its properties on high-fat diet (HFD)-induced metabolic impairments. In a comparative study with XN, we report that 4-(5-(4-hydroxyphenyl)-1-methyl-1H-pyrazol-3-yl)-5-methoxy-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (XP) uncouples oxidative phosphorylation in C2C12 cells. In HFD-fed mice, XP improved glucose tolerance and decreased weight gain by increasing EE and locomotor activity. Using an untargeted metabolomics approach, we assessed the effects of treatment on metabolites and their corresponding biochemical pathways. We found that XP and XN reduced purine metabolites and other energy metabolites in the plasma of HFD-fed mice. The induction of locomotor activity was associated with an increase in inosine monophosphate in the cortex of XP-treated mice. Together, these results suggest that XP, better than XN, affects mitochondrial respiration and cellular energy metabolism to prevent obesity in HFD-fed mice.

2.
Mol Nutr Food Res ; 63(2): e1800923, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471194

RESUMEN

SCOPE: The intestinal microbiota transforms a wide range of available substrates, including polyphenols. Microbial catabolites of polyphenols can contribute in significant ways to the health-promoting properties of their parent polyphenols. This work aims to identify intestinal metabolites of xanthohumol (XN), a prenylated flavonoid found in hops (Humulus lupulus) and beer, as well as to identify pathways of metabolism of XN in the gut. METHODS AND RESULTS: To investigate intestinal metabolism, XN and related prenylated flavonoids, isoxanthohumol (IX), and 8-prenylnaringenin (8PN) were added to growing cultures of intestinal bacteria, Eubacterium ramulus and E. limosum. Liquid chromatography coupled with mass spectrometry was used to identify metabolites of the flavonoids from the cultures. The metabolic capacity of E. limosum appears to be limited to O-demethylation. Evidence from the study indicates that E. ramulus hydrogenates XN to form α,ß-dihydroxanthohumol (DXN) and metabolizes the potent phytoestrogen 8PN into the chalcones, O-desmethylxanthohumol (DMX) and O-desmethyl-α,ß-dihydroxanthohumol (DDXN). CONCLUSION: Microbial metabolism is likely to affect both activity and toxicity of XN and derivatives. This study along with others highlights that attention should be focused on metabolites, in particular, products of intestinal microbial metabolism.


Asunto(s)
Eubacterium/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Intestinos/microbiología , Propiofenonas/metabolismo , Espectrometría de Masas en Tándem , Xantonas/metabolismo
3.
J Labelled Comp Radiopharm ; 60(14): 639-648, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28984993

RESUMEN

Xanthohumol [(E)-6'-methoxy-3'-(3-methylbuten-2-yl)-2',4',4″-trihydroxychalcone], he principal prenylated flavonoid from hops, has a complex bioactivity profile, and 13 C-labeled isotopomers of this compound are of potential use as molecular probes and as analytical standards to study metabolism and mode of action. 1,3-[13 C]2 -Xanthohumol was prepared by an adaptation of the total synthesis of Khupse and Erhardt in 7 steps and 5.7% overall yield from phloroglucinol by a route incorporating a cascade Claisen-Cope rearrangement to install the 3'-prenyl moiety from a 5'-prenyl aryl ether and an aldol condensation between 1-[13 C]-2',4'-bis(benzyloxymethyloxy)-6'-methoxy-3'-(3-methylbuten-2-yl)acetophenone and 1'-[13 C]-4-(methoxymethyloxy)benzaldehyde. The 13 C-atom in the methyl ketone was derived from 1-[13 C]-acetyl chloride while that in the aryl aldehyde was derived from [13 C]-iodomethane. Tri- and penta-13 C-labeled xanthohumols were similarly prepared by applying minor modifications to the route.


Asunto(s)
Flavonoides/síntesis química , Humulus/química , Propiofenonas/síntesis química , Isótopos de Carbono/química , Técnicas de Química Sintética/métodos , Flavonoides/química , Isomerismo , Propiofenonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...