Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(51): 21025-21035, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38091513

RESUMEN

Herein, neptunium(V) carbonates containing sodium or potassium cations were synthesized via chemical precipitation. Various techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetry combined with differential scanning calorimetry, X-ray diffraction, and X-ray absorption spectroscopy were used to analyze the microstructures and elemental compositions of these samples. The crystal structures of hydrated NaNpO2CO3·3H2O (P1, a = 4.3420(2) Å, b = 4.8962(2) Å, c = 10.0933(11) Å, α = 91.014(7)°, ß = 77.834(11)°, and γ = 90.004(10)°) and KNpO2CO3 (P63/mmc, a = b = 5.0994(2) Å, c = 10.2210(15) Å) were determined for the first time using the Rietveld method. The synthesized carbonates exhibited distinct structural features and decomposition behaviors, as demonstrated through thermogravimetry analysis, which revealed the presence of crystalline hydrate water in sodium neptunium(V) carbonate. Furthermore, calcium-containing neptunium(V) carbonates were synthesized and characterized. Samples with the general composition Ca0.5NpO2CO3 were obtained using the ion exchange method and chemical precipitation from solutions containing competing cations (Ca2+, Na+, K+, and Mg2+). The synthesis conditions notably affected the diffraction patterns of the obtained calcium neptunium(V) carbonates. This investigation enhances our understanding of the structural properties and thermodynamic stability of neptunium(V) carbonates in the presence of diverse cations commonly found under radioactive waste disposal conditions.

2.
Environ Sci Technol ; 57(13): 5243-5251, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36940242

RESUMEN

The sorption of Ce(III) on three abundant environmental minerals (goethite, anatase, and birnessite) was investigated. Batch sorption experiments using a radioactive 139Ce tracer were performed to investigate the key features of the sorption process. Differences in sorption kinetics and changes in oxidation states were found in the case of the sorption of Ce(III) on birnessite compared to that on other minerals. Speciation of cerium onto all of the studied minerals was investigated using spectral and microscopic methods: high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and X-ray absorption spectroscopy (XAS) in conjunction with theoretical calculations. It was found that during the sorption process onto birnessite, Ce(III) was oxidized to Ce(IV), while the Ce(III) on goethite and anatase surfaces remained unchanged. Oxidation of Ce(III) by sorption on birnessite was also accompanied by the formation of CeO2 nanoparticles on the mineral surface, which depended on the initial cerium concentration and pH value.


Asunto(s)
Cerio , Minerales , Minerales/química , Adsorción
3.
Chemistry ; 27(1): 252-263, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32956492

RESUMEN

The structural characterisation of actinide nanoparticles (NPs) is of primary importance and hard to achieve, especially for non-homogeneous samples with NPs less than 3 nm. By combining high-energy X-ray scattering (HEXS) and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD XANES) analysis, we have characterised for the first time both the short- and medium-range order of ThO2 NPs obtained by chemical precipitation. By using this methodology, a novel insight into the structures of NPs at different stages of their formation has been achieved. The pair distribution function revealed a high concentration of ThO2 small units similar to thorium hexamer clusters mixed with 1 nm ThO2 NPs in the initial steps of formation. Drying the precipitates at around 150 °C promoted the recrystallisation of the smallest units into more thermodynamically stable ThO2 NPs. HERFD XANES analysis at the thorium M4 edge, a direct probe for f states, showed variations that we have correlated with the breakdown of the local symmetry around the thorium atoms, which most likely concerns surface atoms. Together, HEXS and HERFD XANES are a powerful methodology for investigating actinide NPs and their formation mechanism.

4.
Chemistry ; 27(1): 5, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210366

RESUMEN

Invited for the cover of this issue is Lucia Amidani and co-workers from the The European Synchrotron, Helmholtz Zentrum Dresden-Rossendorf, Lomonosov Moscow State University, Kurchatov Institute, and the Université Grenoble Alpes. The image depicts the atomic structure of the sample being viewed through "atomic googles", which represent the X-ray techniques used in this work. Read the full text of the article at 10.1002/chem.202003360.

5.
Nanoscale ; 11(39): 18142-18149, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31555787

RESUMEN

Understanding the complex chemistry of functional nanomaterials is of fundamental importance. Controlled synthesis and characterization at the atomic level is essential to gain deeper insight into the unique chemical reactivity exhibited by many nanomaterials. Cerium oxide nanoparticles have many industrial and commercial applications, resulting from very strong catalytic, pro- and anti-oxidant activity. However, the identity of the active species and the chemical mechanisms imparted by nanoceria remain elusive, impeding the further development of new applications. Here, we explore the behavior of cerium oxide nanoparticles of different sizes at different temperatures and trace the electronic structure changes by state-of-the-art soft and hard X-ray experiments combined with computational methods. We confirm the absence of the Ce(iii) oxidation state at the surface of CeO2 nanoparticles, even for particles as small as 2 nm. Synchrotron X-ray absorption experiments at Ce L3 and M5 edges, combined with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) and theoretical calculations demonstrate that in addition to the nanoceria charge stability, the formation of hydroxyl groups at the surface profoundly affects the chemical performance of these nanomaterials.

6.
Phys Chem Chem Phys ; 21(20): 10635-10643, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31080986

RESUMEN

Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations of Th atoms in the core and on the surface of the NP indeed demonstrates that the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.

7.
Dalton Trans ; 47(32): 11239-11244, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30058661

RESUMEN

Precipitates formed by the neutralisation of Pu(iii), Pu(iv), Pu(v), and Pu(vi) solutions were characterised by HRTEM, SAXS, and XRD in the suspensions. PuO2 nanoparticles uniform in size (typical diameter around 2.5 nm) and phase composition were observed in all cases under equilibrium conditions. For Pu(vi), the precipitation reactions proceed via an intermediate product.

8.
ACS Cent Sci ; 2(4): 253-65, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27163056

RESUMEN

Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...