Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 21, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737754

RESUMEN

BACKGROUND: In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity. RESULTS: We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins. CONCLUSIONS: We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.


Asunto(s)
Cadenas Ligeras de Inmunoglobulina , Mieloma Múltiple , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloide/metabolismo , Secuencia de Aminoácidos , Proteolisis
2.
J Chem Phys ; 158(2): 024904, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641409

RESUMEN

The interplay of liquid-liquid phase separation (LLPS) and dynamical arrest can lead to the formation of gels and glasses, which is relevant for such diverse fields as condensed matter physics, materials science, food engineering, and the pharmaceutical industry. In this context, protein solutions exhibit remarkable equilibrium and non-equilibrium behaviors. In the regime where attractive and repulsive forces compete, it has been demonstrated, for example, that the location of the dynamical arrest line seems to be independent of ionic strength, so that the arrest lines at different ionic screening lengths overlap, in contrast to the LLPS coexistence curves, which strongly depend on the salt concentration. In this work, we show that the same phenomenology can also be observed when the electrostatic repulsions are largely screened, and the range and strength of the attractions are varied. In particular, using lysozyme in brine as a model system, the metastable gas-liquid binodal and the dynamical arrest line as well as the second virial coefficient have been determined for various solution conditions by cloud-point measurements, optical microscopy, centrifugation experiments, and light scattering. With the aim of understanding this new experimental phenomenology, we apply the non-equilibrium self-consistent generalized Langevin equation theory to a simple model system with only excluded volume plus short-range attractions, to study the dependence of the predicted arrest lines on the range of the attractive interaction. The theoretical predictions find a good qualitative agreement with experiments when the range of the attraction is not too small compared with the size of the protein.


Asunto(s)
Modelos Biológicos , Proteínas , Geles , Concentración Osmolar , Electricidad Estática , Soluciones
3.
Phys Chem Chem Phys ; 25(4): 3031-3041, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36607608

RESUMEN

Liquid-liquid phase separation (LLPS) of protein solutions is governed by highly complex protein-protein interactions. Nevertheless, it has been suggested that based on the extended law of corresponding states (ELCS), as proposed for colloids with short-range attractions, one can rationalize not only the thermodynamics, but also the structure and dynamics of such systems. This claim is systematically and comprehensively tested here by static and dynamic light scattering experiments. Spinodal lines, the isothermal osmotic compressibility κT and the relaxation rate of concentration fluctuations Γ are determined for protein solutions in the vicinity of LLPS. All these quantities are found to exhibit a corresponding-states behavior. This means that, for different solution conditions, these quantities are essentially the same if considered at similar reduced temperature or second virial coefficient. For moderately concentrated solutions, the volume fraction ϕ dependence of κT and Γ can be consistently described by Baxter's model of adhesive hard spheres. The off-critical, asymptotic T behavior of κT and Γ close to LLPS is consistent with the scaling laws predicted by mean-field theory. Thus, the present work aims at a comprehensive experimental test of the applicability of the ELCS to structural and dynamical properties of concentrated protein solutions.


Asunto(s)
Coloides , Proteínas , Temperatura , Termodinámica , Proteínas/química , Dispersión Dinámica de Luz , Soluciones/química
4.
J Chem Phys ; 156(24): 244903, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35778071

RESUMEN

Intermolecular interactions in protein solutions, in general, contain many contributions. If short-range attractions dominate, the state diagram exhibits liquid-liquid phase separation (LLPS) that is metastable with respect to crystallization. In this case, the extended law of corresponding states (ELCS) suggests that thermodynamic properties are insensitive to details of the underlying interaction potential. Using lysozyme solutions, we investigate the applicability of the ELCS to the static structure factor and how far effective colloidal interaction models can help to rationalize the phase behavior and interactions of protein solutions in the vicinity of the LLPS binodal. The (effective) structure factor has been determined by small-angle x-ray scattering. It can be described by Baxter's adhesive hard-sphere model, which implies a single fit parameter from which the normalized second virial coefficient b2 is inferred and found to quantitatively agree with previous results from static light scattering. The b2 values are independent of protein concentration but systematically vary with temperature and solution composition, i.e., salt and additive content. If plotted as a function of temperature normalized by the critical temperature, the values of b2 follow a universal behavior. These findings validate the applicability of the ELCS to globular protein solutions and indicate that the ELCS can also be reflected in the structure factor.


Asunto(s)
Proteínas , Cristalización , Proteínas/química , Soluciones/química , Temperatura , Termodinámica
5.
Sci Rep ; 12(1): 3061, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197521

RESUMEN

Proteins in their native state are only marginally stable and tend to aggregate. However, protein misfolding and condensation are often associated with undesired processes, such as pathogenesis, or unwanted properties, such as reduced biological activity, immunogenicity, or uncontrolled materials properties. Therefore, controlling protein aggregation is very important, but still a major challenge in various fields, including medicine, pharmacology, food processing, and materials science. Here, flexible, amorphous, micron-sized protein aggregates composed of lysozyme molecules reduced by dithiothreitol are used as a model system. The preformed amorphous protein aggregates are exposed to a weak alternating current electric field. Their field response is followed in situ by time-resolved polarized optical microscopy, revealing field-induced deformation, reorientation and enhanced polarization as well as the disintegration of large clusters of aggregates. Small-angle dynamic light scattering was applied to probe the collective microscopic dynamics of amorphous aggregate suspensions. Field-enhanced local oscillations of the intensity auto-correlation function are observed and related to two distinguishable elastic moduli. Our results validate the prospects of electric fields for controlling protein aggregation processes.


Asunto(s)
Electricidad , Agregado de Proteínas , Ditiotreitol , Dispersión Dinámica de Luz , Microscopía de Polarización/métodos , Muramidasa/química , Suspensiones/química
6.
Sci Adv ; 8(3): eabk0627, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061533

RESUMEN

In nature and technology, particle dynamics frequently occur in complex environments, for example in restricted geometries or crowded media. These dynamics have often been modeled invoking a fractal structure of the medium although the fractal structure was only indirectly inferred through the dynamics. Moreover, systematic studies have not yet been performed. Here, colloidal particles moving in a laser speckle pattern are used as a model system. In this case, the experimental observations can be reliably traced to the fractal structure of the underlying medium with an adjustable fractal dimension. First-passage time statistics reveal that the particles explore the speckle in a self-similar, fractal manner at least over four decades in time and on length scales up to 20 times the particle radius. The requirements for fractal diffusion to be applicable are laid out, and methods to extract the fractal dimension are established.

7.
Phys Chem Chem Phys ; 23(39): 22384-22394, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34608908

RESUMEN

Ethanol is a common protein crystallization agent, precipitant, and denaturant, but also alters the dielectric properties of solutions. While ethanol-induced unfolding is largely ascribed to its hydrophobic parts, its effect on protein phase separation and inter-protein interactions remains poorly understood. Here, the effects of ethanol and NaCl on the phase behavior and interactions of protein solutions are studied in terms of the metastable liquid-liquid phase separation (LLPS) and the second virial coefficient B2 using lysozyme solutions. Determination of the phase diagrams shows that the cloud-point temperatures are reduced and raised by the addition of ethanol and salt, respectively. The observed trends can be explained using the extended law of corresponding states as changes of B2. The results for B2 agree quantitatively with those of static light scattering and small-angle X-ray scattering experiments. Furthermore, B2 values calculated based on inter-protein interactions described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential and considering the dielectric solution properties and electrostatic screening due to the ethanol and salt content quantitatively agree with the experimentally observed B2 values.


Asunto(s)
Etanol/química , Muramidasa/química , Proteínas/química , Muramidasa/metabolismo , Soluciones , Temperatura , Agua/química
8.
Int J Pharm ; 603: 120716, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015382

RESUMEN

Amorphous Solid Dispersions (ASDs) are a major drug formulation technique to achieve higher bioavailability for poorly water-soluble active pharmaceutical ingredients. So far, dissolution tailoring and supersaturation enhancement have been studied in detail, whereas less is known about the importance of formed precipitates with amorphous or crystalline states at the site of drug absorption. Regorafenib monohydrate (RGF MH), a multikinase inhibitor drug categorized as Biopharmaceutics Classification System (BCS) class II compound, was formulated with povidone K25 and hypromellose acetate succinate (HPMCAS) as an ASD. Here, for the first time, the RGF precipitation process as well as the physicochemical properties of the arising precipitates are investigated. The formed precipitates from biorelevant dissolution showed varying drug content and were analyzed offline by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), confocal Raman microscopy (CRM), X-ray powder diffraction (XRPD), and small angle X-ray scattering (SAXS). In addition to different crystalline RGF precipitates, an amorphous co-precipitate of RGF and HPMCAS was identified, which was suppressed in the presence of PVP. Wide angle X-ray scattering (WAXS) and isothermal calorimetry (ITC) were used to track the precipitation process of RGF in-situ. From calorimetric data, the precipitation profile was calculated. RGF forms precipitates in multiple polymorphic states dependent on the environmental conditions, i.e., dissolution media composition and chosen excipients. The engineered formation of defined amorphous structures in-vivo may be a promising future drug formulation strategy.


Asunto(s)
Metilcelulosa , Povidona , Rastreo Diferencial de Calorimetría , Compuestos de Fenilurea , Piridinas , Dispersión del Ángulo Pequeño , Solubilidad , Difracción de Rayos X
9.
Phys Chem Chem Phys ; 23(4): 2686-2696, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33481978

RESUMEN

During a first-order phase transition, a thermodynamic system releases or absorbs latent heat. Despite their fundamental importance, the heat or enthalpy change occurring during protein crystallization has been directly measured only in a few cases, and the associated entropy change can only be determined indirectly. This work provides an experimental determination and theoretical analysis of the dependence of the molar crystallization enthalpy of lysozyme solutions, ΔHxtal, on the physicochemical solution parameters. Its value is determined directly by isothermal microcalorimetry and indirectly by a van't Hoff analysis of solubility data, which quantitatively agree. This suggests a two-state crystallization process, in which oligomeric intermediates play a minor role. ΔHxtal is found to be negative on the order of few tens of the thermal energy per molecule. It is independent of protein concentration and stirring speed, but weakly depends on salt (NaCl) concentration and solution pH. Assuming that crystals are electrostatically neutral, these trends are explained by a linearized Poisson-Boltzmann theory. In addition, the molar crystallization entropy, ΔSxtal, is analyzed. The dependence of the van't Hoff entropy on salt concentration and pH is captured by the model, complementing the analysis of crystallization thermodynamics.


Asunto(s)
Muramidasa/química , Animales , Calorimetría , Pollos , Cristalización , Entropía , Termodinámica
10.
PeerJ ; 8: e8771, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211238

RESUMEN

In light chain (LC) diseases, monoclonal immunoglobulin LCs are abundantly produced with the consequence in some cases to form deposits of a fibrillar or amorphous nature affecting various organs, such as heart and kidney. The factors that determine the solubility of any given LC in vivo are still not well understood. We hypothesize that some of the biochemical properties of the LCs that have been shown to correlate with amyloid fibril formation in patients also can be used as predictors for the degree of kidney damage in a patient group that is only biased by protein availability. We performed detailed biochemical and biophysical investigations of light chains extracted and purified from the urine of a group of 20 patients with light chain disease. For all samples that contained a sufficiently high concentration of LC, we quantified the unfolding temperature of the LCs, the monomer-dimer distribution, the digestibility by trypsin and the formation of amyloid fibrils under various conditions of pH and reducing agent. We correlated the results of our biophysical and biochemical experiments with the degree of kidney damage in the patient group and found that most of these parameters do not correlate with kidney damage as defined by clinical parameters. However, the patients with the greatest impairment of kidney function have light chains which display very poor digestibility by trypsin. Most of the LC properties reported before to be predictors of amyloid formation cannot be used to assess the degree of kidney damage. Our finding that poor trypsin digestibility correlates with kidney damage warrants further investigation in order to probe a putative mechanistic link between these factors.

11.
J Phys Chem Lett ; 7(19): 4008-4014, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27662500

RESUMEN

We quantitatively link the macroscopic phase behavior of protein solutions to protein-protein interactions based on a coarse-grained colloidal approach. We exploit the extended law of corresponding states and apply the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in order to infer the second virial coefficient b2, an integral measure of the interaction potential, from the phase behavior, namely, cloud-point temperature (CPT) measurements under conditions favoring protein crystallization. This determination of b2 yields values that quantitatively agree with the results of static light scattering (SLS) experiments. The strength of the attractions is quantified in terms of an effective Hamaker constant, which accounts for van der Waals attractions as well as non-DLVO forces, such as hydration and hydrophobic interactions. Our approach based on simple lab experiments to determine the CPT in combination with the DLVO theory is expected to facilitate further biophysical research on protein-protein interactions in complex solution environments.


Asunto(s)
Proteínas/química , Animales , Pollos , Cristalización , Luz , Modelos Moleculares , Muramidasa/química , Muramidasa/metabolismo , Proteínas/metabolismo , Dispersión de Radiación , Soluciones/química , Electricidad Estática , Temperatura
12.
J Chem Phys ; 145(4): 044905, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27475395

RESUMEN

Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g((1))(r) and an analogue of the Edwards-Anderson order parameter g((2))(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

13.
Phys Chem Chem Phys ; 18(28): 18887-95, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27353405

RESUMEN

Anomalous diffusion is a ubiquitous phenomenon in complex systems. It is often quantified using time- and ensemble-averages to improve statistics, although time averages represent a non-local measure in time and hence can be difficult to interpret. We present a detailed analysis of the influence of time- and ensemble-averages on dynamical quantities by investigating Brownian particles in a rough potential energy landscape (PEL). Initially, the particle ensemble is randomly distributed, but the occupancy of energy values evolves towards the equilibrium distribution. This relaxation manifests itself in the time evolution of time- and ensemble-averaged dynamical measures. We use Monte Carlo simulations to study particle dynamics in a potential with a Gaussian distribution of energy values, where the long-time limit of the diffusion coefficient is known from theory. In our experiments, individual colloidal particles are exposed to a laser speckle pattern inducing a non-Gaussian roughness and are followed by optical microscopy. The relaxation depends on the kind and degree of roughness of the PEL. It can be followed and quantified by the time- and ensemble-averaged mean squared displacement. Moreover, the heterogeneity of the dynamics is characterized using single-trajectory analysis. The results of this work are relevant for the correct interpretation of single-particle tracking experiments in general.

14.
Phys Chem Chem Phys ; 18(15): 10270-80, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27020538

RESUMEN

Cosolvents are routinely used to modulate the (thermal) stability of proteins and, hence, their interactions with proteins have been studied intensely. However, less is known about their specific effects on protein-protein interactions, which we characterize in terms of the protein phase behavior. We analyze the phase behavior of lysozyme solutions in the presence of sodium chloride (NaCl), guanidine hydrochloride (GuHCl), glycerol, and dimethyl sulfoxide (DMSO). We experimentally determined the crystallization boundary (XB) and, in combination with data on the cloud-point temperatures (CPTs), the crystallization gap. In agreement with other studies, our data indicate that the additives might affect the protein phase behavior through electrostatic screening and additive-specific contributions. At high salt concentrations, where electrostatic interactions are screened, both the CPT and the XB are found to be linear functions of the additive concentration. Their slopes quantify the additive-specific changes of the phase behavior and thus of the protein-protein interactions. While the specific effect of NaCl is to induce attractions between proteins, DMSO, glycerol and GuHCl (with increasing strength) weaken attractions and/or induce repulsions. Except for DMSO, changes of the CPT are stronger than those of the XB. Furthermore, the crystallization gap widens in the case of GuHCl and glycerol and narrows in the case of NaCl. We relate these changes to colloidal interaction models, namely square-well and patchy interactions.


Asunto(s)
Proteínas/química , Solventes/química , Cristalización , Iones , Unión Proteica , Cloruro de Sodio/química , Temperatura
15.
J Phys Chem B ; 119(48): 14986-93, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26545156

RESUMEN

Protein phase behavior and protein-protein interactions can be tuned by additives. We experimentally determined the phase behavior of lysozyme solutions, namely, the cloud-point temperature (CPT), in the presence of two additives, sodium chloride (NaCl) and guanidine hydrochloride (GuHCl). Their concentrations are chosen to maintain the secondary structure, as verified by CD spectroscopy. Our data indicate that the salts affect the CPT through electrostatic screening and salt-specific contributions. At high salt concentrations, the CPT is a linear function of the additive concentration for the salts NaCl and GuHCl as well as for a nonionic additive, glycerol, and a solvent, dimethyl sulfoxide (DMSO). Their molar temperature increments, which rank their specific effects on the CPT (NaCl > 0 > DMSO > glycerol > GuHCl), are found to be essentially independent of the protein concentration. In particular, the specific effects of NaCl and GuHCl in mixtures are found to be additive, indicating the absence of synergies or suppressions between both salts. Thus, molar temperature increments represent a characteristic measure for the specific effects of additives on protein interactions, which is easily accessible in lab experiments and which will help to characterize the effects of additives on protein interactions and phase behavior.


Asunto(s)
Guanidina/química , Muramidasa/química , Cloruro de Sodio/química , Muramidasa/metabolismo , Unión Proteica , Temperatura
16.
J Chem Phys ; 142(17): 174905, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25956118

RESUMEN

The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.


Asunto(s)
Proteínas/química , Coloides/química , Simulación por Computador , Gases/química , Modelos Lineales , Modelos Químicos , Método de Montecarlo , Transición de Fase , Soluciones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...