Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39087348

RESUMEN

BACKGROUND: Dyslipidemia increases cardiovascular disease risk, the leading cause of death worldwide. Under time-restricted feeding (TRF), wherein food intake is restricted to a consistent window of <12 hours, weight gain, glucose intolerance, inflammation, dyslipidemia, and hypercholesterolemia are all reduced in mice fed an obesogenic diet. LDLR (low-density lipoprotein receptor) mutations are a major cause of familial hypercholesterolemia and early-onset cardiovascular disease. METHODS: We subjected benchmark preclinical models, mice lacking LDLR-knockout or ApoE knockout to ad libitum feeding of an isocaloric atherogenic diet either ad libitum or 9 hours TRF for up to 13 weeks and assessed disease development, mechanism, and global changes in hepatic gene expression and plasma lipids. In a regression model, a subset of LDLR-knockout mice were ad libitum fed and then subject to TRF. RESULTS: TRF could significantly attenuate weight gain, hypercholesterolemia, and atherosclerosis in mice lacking the LDLR-knockout mice under experimental conditions of both prevention and regression. In LDLR-knockout mice, increased hepatic expression of genes mediating ß-oxidation during fasting is associated with reduced VLDL (very-low-density lipoprotein) secretion and lipid accumulation. Additionally, increased sterol catabolism coupled with fecal loss of cholesterol and bile acids contributes to the atheroprotective effect of TRF. Finally, TRF alone or combined with a cholesterol-free diet can reduce atherosclerosis in LDLR-knockout mice. However, mice lacking ApoE, which is an important protein for hepatic lipoprotein reuptake do not respond to TRF. CONCLUSIONS: In a preclinical animal model, TRF is effective in both the prevention and regression of atherosclerosis in LDLR knockout mice. The results suggest TRF alone or in combination with a low-cholesterol diet can be a lifestyle intervention for reducing cardiovascular disease risk in humans.

2.
JID Innov ; 4(1): 100243, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38162017

RESUMEN

Psoriasis (PSO) is a chronic and systemic inflammatory autoimmune disease associated with atherosclerosis and myocardial infarction. Given that atherosclerosis is both inflammation and immune driven, we sought to expand on known immune and inflammatory biomarkers in a PSO cohort. In this study, we focus on oxidized mtDNA (ox-mtDNA), a product of cells undergoing pyroptosis, including keratinocytes, which was quantified in patients with PSO and individuals without PSO by ELISA. Patients with PSO had significantly higher ox-mtDNA levels than healthy subjects (mean ± SD = 9246 ± 2518 pg/ml for patients with PSO vs 7382 ± 2506 pg/ml for those without; P = .006). Importantly, ox-mtDNA was positively associated with IL-17a (ß = 0.25; P = .03) and low-density granulocytes (ß = 0.37; P = .005) but negatively associated with high-density lipoprotein-cholesterol (ß = -0.29; P = .006). After adjusting for traditional cardiovascular risk factors, we found that ox-mtDNA was associated with noncalcified coronary burden, which was measured by coronary computed tomography angiography (ß = 0.19; P = .003). Biologic-naïve patients with PSO receiving anti-IL-17a therapy had a 14% decrease in ox-mtDNA (mean ± SD: 10540 ± 614 pg/ml at baseline to 9016 ± 477 pg/ml at 1 year; P = .016) and a 10% reduction in noncalcified coronary artery burden (mean ± SD: 1.06 ± 0.45 at baseline, reducing to 0.95 ± 0.35 at 1 year; P = .0037). In summary, levels of ox-mtDNA in PSO are associated with measures of coronary plaque formation, indicating that this biomarker may be an autoimmune-driven early atherosclerotic feature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA