Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Methods ; 3(9): 100574, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751696

RESUMEN

Many vaccine candidate proteins in the malaria parasite Plasmodium falciparum are under strong immunological pressure and confer antigenic diversity. We present a sequencing and data analysis platform for the genomic surveillance of the insertion or deletion (indel)-rich antigens merozoite surface protein 1 (MSP1), MSP2, glutamate-rich protein (GLURP), and CSP from P. falciparum using long-read circular consensus sequencing (CCS) in multiclonal malaria isolates. Our platform uses 40 PCR primers per gene to asymmetrically barcode and identify multiclonal infections in pools of up to 384 samples. With msp2, we validated the method using 235 mock infections combining 10 synthetic variants at different concentrations and infection complexities. We applied this strategy to P. falciparum isolates from a longitudinal cohort in Tanzania. Finally, we constructed an analysis pipeline that streamlines the processing and interpretation of epidemiological and antigenic diversity data from demultiplexed FASTQ files. This platform can be easily adapted to other polymorphic antigens of interest in Plasmodium or any other human pathogen.


Asunto(s)
Malaria Falciparum , Plasmodium , Humanos , Genómica , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Ácido Glutámico
2.
Methods Mol Biol ; 2470: 51-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881338

RESUMEN

Defining clone composition in Plasmodium falciparum cultures is key to verify that in vitro experiments are performed on the parasite line of interest. Genotyping of the highly polymorphic merozoite surface protein 2 gene (msp2) is a widely established method to define P. falciparum clones. Specific size variants from the two msp2 families (IC and FC27) can be used as "fingerprints" to identify individual clones in parasite mixtures. Size variant genotyping of msp2 using fluorescent nested PCR followed by fragment analysis by capillary electrophoresis (CE) provides accurate information about the presence of one or multiple parasite clones. Here, we describe an adaptation of this approach to assess the integrity and purity of P. falciparum lines kept in in vitro culture. In addition, we describe the use of synthetic mock parasite mixtures with the msp2 sequences from the parasite lines kept in culture that can provide a good estimate of the assay sensitivity, specificity, and reproducibility. We suggest that genotyping of P. falciparum lines should be performed on a regular basis as part of the standard procedures of in vitro parasite culture, as a way to secure that the parasite lines of interest are cultivated, and to monitor any cross-contamination and/or recombination events.


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Antígenos de Protozoos/genética , Células Clonales , Variación Genética , Genotipo , Humanos , Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Reproducibilidad de los Resultados
3.
Cell Rep ; 39(3): 110709, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443186

RESUMEN

Natural immunity to malaria develops over time with repeated malaria episodes, but protection against severe malaria and immune regulation limiting immunopathology, called tolerance, develops more rapidly. Here, we comprehensively profile the blood immune system in patients, with or without prior malaria exposure, over 1 year after acute symptomatic Plasmodium falciparum malaria. Using a data-driven analysis approach to describe the immune landscape over time, we show that a dampened inflammatory response is associated with reduced γδ T cell expansion, early expansion of CD16+ monocytes, and parasite-specific antibodies of IgG1 and IgG3 isotypes. This also coincided with reduced parasitemia and duration of hospitalization. Our data indicate that antibody-mediated phagocytosis during the blood stage infection leads to lower parasitemia and less inflammatory response with reduced γδ T cell expansion. This enhanced control and reduced inflammation points to a potential mechanism on how tolerance is established following repeated malaria exposure.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Inmunoglobulina G , Parasitemia , Plasmodium falciparum , Análisis de Sistemas
4.
Glycobiology ; 32(7): 600-615, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35323921

RESUMEN

Lectins are non-immunoglobulin-type proteins that bind to specific carbohydrate epitopes and play important roles in intra- and inter-organismic interactions. Here, we describe a novel fucose-specific lectin, termed CML1, which we identified from fruiting body extracts of Coprinopsis cinerea. For further characterization, the coding sequence for CML1 was cloned and heterologously expressed in Escherichia coli. Feeding of CML1-producing bacteria inhibited larval development of the bacterivorous nematode Caenorhabditis tropicalis, but not of C. elegans. The crystal structure of the recombinant protein in its apo-form and in complex with H type I or Lewis A blood group antigens was determined by X-ray crystallography. The protein folds as a sandwich of 2 antiparallel ß-sheets and forms hexamers resulting from a trimer of dimers. The hexameric arrangement was confirmed by small-angle X-ray scattering (SAXS). One carbohydrate-binding site per protomer was found at the dimer interface with both protomers contributing to ligand binding, resulting in a hexavalent lectin. In terms of lectin activity of recombinant CML1, substitution of the carbohydrate-interacting residues His54, Asn55, Trp94, and Arg114 by Ala abolished carbohydrate-binding and nematotoxicity. Although no similarities to any characterized lectin were found, sequence alignments identified many non-characterized agaricomycete proteins. These results suggest that CML1 is the founding member of a novel family of fucoside-binding lectins involved in the defense of agaricomycete fruiting bodies against predation by fungivorous nematodes.


Asunto(s)
Caenorhabditis elegans , Proteínas Fúngicas , Agaricales , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Carbohidratos , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/genética , Lectinas/farmacología , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X
5.
J Proteomics ; 231: 104002, 2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33045431

RESUMEN

Successful Plasmodium falciparum invasion of red blood cells includes the orderly execution of highly specific receptor-ligand molecular interactions between the parasite's proteins and the red blood cell membrane proteins. There is a growing need for elucidating receptor-ligand pairings, which will help in understanding the parasite's biology and provide the fundamental basis for developing prophylactic or therapeutic alternatives leading to mitigating or eliminating this type of malaria. We have thus used Plasmodium falciparum RH5 - derived peptides and ghost red blood cell proteins in synthetic peptide affinity capture assays to identify important host receptors used by Plasmodium spp. in the invasion of red blood cells. LC-MS/MS analysis confirmed the extensively described interaction between PfRH5 and the basigin receptor on the red blood cell membrane. As shown here, tagged synthetic peptides displaying high binding ability to erythrocytes can be used to identify receptors present in protein extracts from ghost red blood cells via affinity capture and LC-MS/MS. SIGNIFICANCE: The article describes a novel approach for identifying red blood cell receptors based on the ability of synthetic peptides having high red blood cell binding capacity to capture Plasmodium spp. receptors on proteins extracted from ghost red blood cells. Specifically, novel methods to identify Plasmodium falciparum reticulocyte binding protein homolog 5 PfRH5 and basigin interaction using a combination of affinity capture and LC-MS/MS assays is described. Identification of these host RBC receptors interacting with malarial parasite proteins is of utmost importance in studying the disease's pathogenesis and will provide crucial information in understanding the parasite's biology. In addition, data from these studies can be used to identify potential therapeutic target(s) to mitigate or eliminate this debilitating disease.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum , Proteínas Portadoras/metabolismo , Cromatografía Liquida , Humanos , Péptidos , Unión Proteica , Proteínas Protozoarias/metabolismo , Espectrometría de Masas en Tándem
6.
G3 (Bethesda) ; 6(1): 87-98, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26585824

RESUMEN

The dung of herbivores, the natural habitat of the model mushroom Coprinopsis cinerea, is a nutrient-rich but also very competitive environment for a saprophytic fungus. We showed previously that C. cinerea expresses constitutive, tissue-specific armories against antagonists such as animal predators and bacterial competitors. In order to dissect the inducible armories against such antagonists, we sequenced the poly(A)-positive transcriptome of C. cinerea vegetative mycelium upon challenge with fungivorous and bacterivorous nematodes, Gram-negative and Gram-positive bacteria and mechanical damage. As a response to the fungivorous nematode Aphelenchus avenae, C. cinerea was found to specifically induce the transcription of several genes encoding previously characterized nematotoxic lectins. In addition, a previously not characterized gene encoding a cytoplasmic protein with several predicted Ricin B-fold domains, was found to be strongly upregulated under this condition. Functional analysis of the recombinant protein revealed a high toxicity toward the bacterivorous nematode Caenorhabditis elegans. Challenge of the mycelium with A. avenae also lead to the induction of several genes encoding putative antibacterial proteins. Some of these genes were also induced upon challenge of the mycelium with the bacteria Escherichia coli and Bacillus subtilis. These results suggest that fungi have the ability to induce specific innate defense responses similar to plants and animals.


Asunto(s)
Agaricales/genética , Antibiosis , Proteínas Fúngicas/genética , Nematodos , Agaricales/metabolismo , Animales , Biología Computacional/métodos , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Estrés Fisiológico/genética , Transcriptoma
7.
BMC Genomics ; 15: 492, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24942908

RESUMEN

BACKGROUND: It is well known that mushrooms produce defense proteins and secondary metabolites against predators and competitors; however, less is known about the correlation between the tissue-specific expression and the target organism (antagonist) specificity of these molecules. In addition, conserved transcriptional circuitries involved in developing sexual organs in fungi are not characterized, despite the growing number of gene expression datasets available from reproductive and vegetative tissue. The aims of this study were: first, to evaluate the tissue specificity of defense gene expression in the model mushroom Coprinopsis cinerea and, second, to assess the degree of conservation in transcriptional regulation during sexual development in basidiomycetes. RESULTS: In order to characterize the regulation in the expression of defense loci and the transcriptional circuitries controlling sexual reproduction in basidiomycetes, we sequenced the poly (A)-positive transcriptome of stage 1 primordia and vegetative mycelium of C. cinerea A43mutB43mut. Our data show that many genes encoding predicted and already characterized defense proteins are differentially expressed in these tissues. The predicted specificity of these proteins with regard to target organisms suggests that their expression pattern correlates with the type of antagonists these tissues are confronted with. Accordingly, we show that the stage 1 primordium-specific protein CC1G_11805 is toxic to insects and nematodes. Comparison of our data to analogous data from Laccaria bicolor and Schizophyllum commune revealed that the transcriptional regulation of nearly 70 loci is conserved and probably subjected to stabilizing selection. A Velvet domain-containing protein was found to be up-regulated in all three fungi, providing preliminary evidence of a possible role of the Velvet protein family in sexual development of basidiomycetes. The PBS-soluble proteome of C. cinerea primordia and mycelium was analyzed by shotgun LC-MS. This proteome data confirmed the presence of intracellular defense proteins in primordia. CONCLUSIONS: This study shows that the exposure of different tissues in fungi to different types of antagonists shapes the expression pattern of defense loci in a tissue-specific manner. Furthermore, we identify a transcriptional circuitry conserved among basidiomycetes during fruiting body formation that involves, amongst other transcription factors, the up-regulation of a Velvet domain-containing protein.


Asunto(s)
Agaricales/fisiología , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Análisis por Conglomerados , Cuerpos Fructíferos de los Hongos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Sitios de Carácter Cuantitativo , Alineación de Secuencia , Transcripción Genética
8.
J Biol Chem ; 287(34): 28276-90, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22733825

RESUMEN

The modification of α1,6-linked fucose residues attached to the proximal (reducing-terminal) core N-acetylglucosamine residue of N-glycans by ß1,4-linked galactose ("GalFuc" epitope) is a feature of a number of invertebrate species including the model nematode Caenorhabditis elegans. A pre-requisite for both core α1,6-fucosylation and ß1,4-galactosylation is the presence of a nonreducing terminal N-acetylglucosamine; however, this residue is normally absent from the final glycan structure in invertebrates due to the action of specific hexosaminidases. Previously, we have identified two hexosaminidases (HEX-2 and HEX-3) in C. elegans, which process N-glycans. In the present study, we have prepared a hex-2;hex-3 double mutant, which possesses a radically altered N-glycomic profile. Whereas in the double mutant core α1,3-fucosylation of the proximal N-acetylglucosamine was abolished, the degree of galactosylation of core α1,6-fucose increased, and a novel Galα1,2Fucα1,3 moiety attached to the distal core N-acetylglucosamine residue was detected. Both galactosylated fucose moieties were also found in two parasitic nematodes, Ascaris suum and Oesophagostomum dentatum. As core modifications of N-glycans are known targets for fungal nematotoxic lectins, the sensitivity of the C. elegans double hexosaminidase mutant was assessed. Although this mutant displayed hypersensitivity to the GalFuc-binding lectin CGL2 and the N-acetylglucosamine-binding lectin XCL, the mutant was resistant to CCL2, which binds core α1,3-fucose. Thus, the use of C. elegans mutants aids the identification of novel N-glycan modifications and the definition of in vivo specificities of nematotoxic lectins with potential as anthelmintic agents.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Epítopos/metabolismo , Fucosa/metabolismo , Hexosaminidasas/metabolismo , Polisacáridos/metabolismo , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Animales , Antihelmínticos/farmacología , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diseño de Fármacos , Epítopos/genética , Fucosa/genética , Galectina 2/farmacología , Glicosilación , Hexosaminidasas/genética , Mutación , Oesophagostomum/genética , Oesophagostomum/metabolismo , Polisacáridos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...