Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2808: 19-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743360

RESUMEN

Morbilliviruses such as measles virus (MeV) are responsible for major morbidity and mortality worldwide, despite the availability of an effective vaccine and global vaccination campaigns. MeV belongs to the mononegavirus order of viral pathogens that store their genetic information in non-segmented negative polarity RNA genomes. Genome replication and viral gene expression are carried out by a virus-encoded RNA-dependent RNA polymerase (RdRP) complex that has no immediate host cell analog. To better understand the organization and regulation of the viral RdRP and mechanistically characterize antiviral candidates, biochemical RdRP assays have been developed that employ purified recombinant polymerase complexes and synthetic RNA templates to monitor the initiation of RNA synthesis and RNA elongation in vitro. In this article, we will discuss strategies for the efficient expression and preparation of mononegavirus polymerase complexes, provide detailed protocols for the execution and optimization of RdRP assays, evaluate alternative options for the choice of template and detection system, and describe the application of the assay for the characterization of inhibitor candidates. Although MeV RdRP assays are the focus of this article, the general strategies and experimental approaches are readily transferable to related viruses in the mononegavirus order.


Asunto(s)
Virus del Sarampión , ARN Polimerasa Dependiente del ARN , Replicación Viral , Virus del Sarampión/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Viral/genética , Mononegavirales/genética , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Humanos
2.
bioRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38659760

RESUMEN

Batborne henipaviruses, such as Nipah virus and Hendra virus, represent a major threat to global health due to their propensity for spillover, severe pathogenicity, and high mortality rate in human hosts. Coupled with the absence of approved vaccines or therapeutics, work with the prototypical species and uncharacterized, emergent species is restricted to high biocontainment facilities. There is a scarcity of such specialized spaces for research, and often the scope and capacity of research which can be conducted at BSL-4 is limited. Therefore, there is a pressing need for innovative life-cycle modeling systems to enable comprehensive research within lower biocontainment settings. This work showcases tetracistronic, transcription and replication competent minigenomes for Nipah virus, Hendra virus, Cedar virus, and Ghana virus, which encode viral proteins facilitating budding, fusion, and receptor binding. We validate the functionality of all encoded viral proteins and demonstrate a variety of applications to interrogate the viral life cycle. Notably, we found that the Cedar virus replicase exhibits remarkable promiscuity, efficiently rescuing minigenomes from all tested henipaviruses. We also apply this technology to GhV, an emergent species which has so far not been isolated in culture. We demonstrate that the reported sequence of GhV is incomplete, but that this missing sequence can be substituted with analogous sequences from other henipaviruses. Use of our GhV system establishes the functionality of the GhV replicase and identifies two antivirals which are highly efficacious against the GhV polymerase.

3.
PLoS Pathog ; 20(2): e1011993, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300953

RESUMEN

Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Nucleótidos de Uracilo , Animales , Ratones , Humanos , Virus de la Influenza A/genética , Antivirales/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/genética , Hurones , Infecciones por Orthomyxoviridae/tratamiento farmacológico
4.
Nat Commun ; 15(1): 1189, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331906

RESUMEN

Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.


Asunto(s)
Virus del Moquillo Canino , Subtipo H1N1 del Virus de la Influenza A , Sarampión , Animales , Femenino , Hurones , Sarampión/complicaciones , Virus del Sarampión/genética , Virus del Moquillo Canino/genética , Antivirales/farmacología , Antivirales/uso terapéutico
5.
Cell Host Microbe ; 32(3): 335-348.e8, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295788

RESUMEN

Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.


Asunto(s)
Microbioma Gastrointestinal , Virosis , Animales , Ratones , Macrófagos Alveolares , Fagocitosis , Interferones , Bacterias
6.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790571

RESUMEN

Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary: Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.

7.
ACS Med Chem Lett ; 14(10): 1434-1440, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849558

RESUMEN

The SARS-CoV-2 main protease (Mpro) has been proven to be a highly effective target for therapeutic intervention, yet only one drug currently holds FDA approval status for this target. We were inspired by a series of publications emanating from the Jorgensen and Anderson groups describing the design of potent, non-peptidic, competitive SARS-CoV-2 Mpro inhibitors, and we saw an opportunity to make several design modifications to improve the overall pharmacokinetic profile of these compounds without losing potency. To this end, we created a focused virtual library using reaction-based enumeration tools in the Schrödinger suite. These compounds were docked into the Mpro active site and subsequently prioritized for synthesis based upon relative binding affinity values calculated by FEP+. Fourteen compounds were selected, synthesized, and evaluated both biochemically and in cell culture. Several of the synthesized compounds proved to be potent, competitive Mpro inhibitors with improved metabolic stability profiles.

8.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37905070

RESUMEN

Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD 50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU. Author Summary: Reduced sensitivity to FDA-approved influenza drugs is a major obstacle to effective antiviral therapy. We have previously demonstrated oral efficacy of a novel clinical candidate drug, 4'-FlU, against seasonal, pandemic, and highly pathogenic avian influenza viruses. In this study, we have determined possible routes of influenza virus escape from 4'-FlU and addressed whether resistance imposes a viral fitness penalty, affecting pathogenicity or ability to transmit. We identified three distinct clusters of mutations that lead to moderately reduced viral sensitivity to the drug. Testing of resistant variants against two chemically unrelated nucleoside analog inhibitors of influenza virus, conditionally approved favipiravir and the broad-spectrum SARS-CoV-2 drug molnupiravir, revealed cross-resistance of one cluster with favipiravir, whereas no viral escape from molnupiravir was noted. We found that the resistant variants are severely attenuated in mice, impaired in their ability to invade the lower respiratory tract and cause viral pneumonia in ferrets, and transmission-defective or compromised. We could fully mitigate lethal infection of mice with the resistant variants with standard or 5-fold elevated oral dose of 4'-FlU. These results demonstrate that partial viral escape from 4'-FlU is feasible in principle, but escape mutation clusters are unlikely to reach clinical significance or persist in circulating influenza virus strains.

9.
Nat Commun ; 14(1): 4731, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550333

RESUMEN

Therapeutic options against SARS-CoV-2 are underutilized. Two oral drugs, molnupiravir and paxlovid (nirmatrelvir/ritonavir), have received emergency use authorization. Initial trials suggested greater efficacy of paxlovid, but recent studies indicated comparable potency in older adults. Here, we compare both drugs in two animal models; the Roborovski dwarf hamster model for severe COVID-19-like lung infection and the ferret SARS-CoV-2 transmission model. Dwarf hamsters treated with either drug survive VOC omicron infection with equivalent lung titer reduction. Viral RNA copies in the upper respiratory tract of female ferrets receiving 1.25 mg/kg molnupiravir twice-daily are not significantly reduced, but infectious titers are lowered by >2 log orders and direct-contact transmission is stopped. Female ferrets dosed with 20 or 100 mg/kg nirmatrelvir/ritonavir twice-daily show 1-2 log order reduction of viral RNA copies and infectious titers, which correlates with low nirmatrelvir exposure in nasal turbinates. Virus replication resurges towards nirmatrelvir/ritonavir treatment end and virus transmits efficiently (20 mg/kg group) or partially (100 mg/kg group). Prophylactic treatment with 20 mg/kg nirmatrelvir/ritonavir does not prevent spread from infected ferrets, but prophylactic 5 mg/kg molnupiravir or 100 mg/kg nirmatrelvir/ritonavir block productive transmission. These data confirm reports of similar efficacy in older adults and inform on possible epidemiologic benefit of antiviral treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Femenino , Cricetinae , Tratamiento Farmacológico de COVID-19 , Hurones , Ritonavir/farmacología , Ritonavir/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Modelos Animales
10.
Microbiol Spectr ; 11(3): e0065323, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191507

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide coronavirus disease 2019 (COVID-19) pandemic. Despite the high efficacy of the authorized vaccines, there may be uncertain and unknown side effects or disadvantages associated with current vaccination approaches. Live-attenuated vaccines (LAVs) have been shown to elicit robust and long-term protection by the induction of host innate and adaptive immune responses. In this study, we sought to verify an attenuation strategy by generating 3 double open reading frame (ORF)-deficient recombinant SARS-CoV-2s (rSARS-CoV-2s) simultaneously lacking two accessory ORF proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). We report that these double ORF-deficient rSARS-CoV-2s have slower replication kinetics and reduced fitness in cultured cells compared with their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2s showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against SARS-CoV-2 and some variants of concern and activated viral component-specific T cell responses. Notably, double ORF-deficient rSARS-CoV-2s were able to protect, as determined by the inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2 in both K18 hACE2 mice and golden Syrian hamsters. Collectively, our results demonstrate the feasibility of implementing the double ORF-deficient strategy to develop safe, immunogenic, and protective LAVs to prevent SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Live-attenuated vaccines (LAVs) are able to induce robust immune responses, including both humoral and cellular immunity, representing a very promising option to provide broad and long-term immunity. To develop LAVs for SARS-CoV-2, we engineered attenuated recombinant SARS-CoV-2 (rSARS-CoV-2) that simultaneously lacks the viral open reading frame 3a (ORF3a) in combination with either ORF6, ORF7a, or ORF7b (Δ3a/Δ6, Δ3a/Δ7a, and Δ3a/Δ7b, respectively) proteins. Among them, the rSARS-CoV-2 Δ3a/Δ7b was completely attenuated and able to provide 100% protection against an otherwise lethal challenge in K18 hACE2 transgenic mice. Moreover, the rSARS-CoV-2 Δ3a/Δ7b conferred protection against viral transmission between golden Syrian hamsters.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Ratones , SARS-CoV-2/genética , Vacunas Atenuadas/genética , Mesocricetus , COVID-19/prevención & control , Vacunación , Inmunización , Anticuerpos Neutralizantes , Ratones Transgénicos , Anticuerpos Antivirales
11.
Nat Microbiol ; 8(6): 1108-1122, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142773

RESUMEN

Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.


Asunto(s)
Quirópteros , Morbillivirus , Animales , Chlorocebus aethiops , Humanos , Células Vero , Zoonosis , Morbillivirus/genética , Línea Celular
12.
PLoS Pathog ; 19(4): e1011342, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068076

RESUMEN

Influenza outbreaks are associated with substantial morbidity, mortality and economic burden. Next generation antivirals are needed to treat seasonal infections and prepare against zoonotic spillover of avian influenza viruses with pandemic potential. Having previously identified oral efficacy of the nucleoside analog 4'-Fluorouridine (4'-FlU, EIDD-2749) against SARS-CoV-2 and respiratory syncytial virus (RSV), we explored activity of the compound against seasonal and highly pathogenic influenza (HPAI) viruses in cell culture, human airway epithelium (HAE) models, and/or two animal models, ferrets and mice, that assess IAV transmission and lethal viral pneumonia, respectively. 4'-FlU inhibited a panel of relevant influenza A and B viruses with nanomolar to sub-micromolar potency in HAE cells. In vitro polymerase assays revealed immediate chain termination of IAV polymerase after 4'-FlU incorporation, in contrast to delayed chain termination of SARS-CoV-2 and RSV polymerase. Once-daily oral treatment of ferrets with 2 mg/kg 4'-FlU initiated 12 hours after infection rapidly stopped virus shedding and prevented transmission to untreated sentinels. Treatment of mice infected with a lethal inoculum of pandemic A/CA/07/2009 (H1N1)pdm09 (pdmCa09) with 4'-FlU alleviated pneumonia. Three doses mediated complete survival when treatment was initiated up to 60 hours after infection, indicating a broad time window for effective intervention. Therapeutic oral 4'-FlU ensured survival of animals infected with HPAI A/VN/12/2003 (H5N1) and of immunocompromised mice infected with pdmCa09. Recoverees were protected against homologous reinfection. This study defines the mechanistic foundation for high sensitivity of influenza viruses to 4'-FlU and supports 4'-FlU as developmental candidate for the treatment of seasonal and pandemic influenza.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Virus Sincitial Respiratorio Humano , Humanos , Animales , Ratones , Gripe Humana/tratamiento farmacológico , Hurones , SARS-CoV-2 , Infecciones por Orthomyxoviridae/patología
13.
bioRxiv ; 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36451893

RESUMEN

Despite the continued spread of SARS-CoV-2 and emergence of variants of concern (VOC) that are capable of escaping preexisting immunity, therapeutic options are underutilized. In addition to preventing severe disease in high-risk patients, antivirals may contribute to interrupting transmission chains. The FDA has granted emergency use authorizations for two oral drugs, molnupiravir and paxlovid. Initial clinical trials suggested an efficacy advantage of paxlovid, giving it a standard-of-care-like status in the United States. However, recent retrospective clinical studies suggested a more comparable efficacy of both drugs in preventing complicated disease and case-fatalities in older adults. For a direct efficacy comparison under controlled conditions, we assessed potency of both drugs against SARS-CoV-2 in two relevant animal models; the Roborovski dwarf hamster model for severe COVID-19 in high-risk patients and the ferret model of upper respiratory tract disease and transmission. After infection of dwarf hamsters with VOC omicron, paxlovid and molnupiravir were efficacious in mitigating severe disease and preventing death. However, a pharmacokinetics-confirmed human equivalent dose of paxlovid did not significantly reduce shed SARS-CoV-2 titers in ferrets and failed to block virus transmission to untreated direct-contact ferrets, whereas transmission was fully suppressed in a group of animals treated with a human-equivalent dose of molnupiravir. Prophylactic administration of molnupiravir to uninfected ferrets in direct contact with infected animals blocked productive SARS-CoV-2 transmission, whereas all contacts treated with prophylactic paxlovid became infected. These data confirm retrospective reports of similar therapeutic benefit of both drugs for older adults, and reveal that treatment with molnupiravir, but not paxlovid, may be suitable to reduce the risk of SARS-CoV-2 transmission.

14.
Gut Microbes ; 14(1): 2105609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915556

RESUMEN

The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here, we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity via GPR41 and 43 in male animals. We further identify a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria to dampen viral entry and hypercoagulation and promote adaptive antiviral immunity.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Antivirales/uso terapéutico , Ácidos Grasos Volátiles , Masculino , Mamíferos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
15.
Microbiol Spectr ; 10(5): e0237922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35980204

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the highly contagious agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. An essential requirement for understanding SARS-CoV-2 biology and the impact of antiviral therapeutics is a robust method to detect the presence of the virus in infected cells or animal models. Despite the development and successful generation of recombinant (r)SARS-CoV-2-expressing fluorescent or luciferase reporter genes, knowledge acquired from their use in in vitro assays and/or in live animals is limited to the properties of the fluorescent or luciferase reporter genes. Herein, for the first time, we engineered a replication-competent rSARS-CoV-2 that expresses both fluorescent (mCherry) and luciferase (Nluc) reporter genes (rSARS-CoV-2/mCherry-Nluc) to overcome limitations associated with the use of a single reporter gene. In cultured cells, rSARS-CoV-2/mCherry-Nluc displayed similar viral fitness as rSARS-CoV-2 expressing single reporter fluorescent and luciferase genes (rSARS-CoV-2/mCherry and rSARS-CoV-2/Nluc, respectively) or wild-type (WT) rSARS-CoV-2, while maintaining comparable expression levels of both reporter genes. In vivo, rSARS-CoV-2/mCherry-Nluc has similar pathogenicity in K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice than rSARS-CoV-2 expressing individual reporter genes or WT rSARS-CoV-2. Importantly, rSARS-CoV-2/mCherry-Nluc facilitates the assessment of viral infection and transmission in golden Syrian hamsters using in vivo imaging systems (IVIS). Altogether, this study demonstrates the feasibility of using this novel bioreporter-expressing rSARS-CoV-2 for the study of SARS-CoV-2 in vitro and in vivo. IMPORTANCE Despite the availability of vaccines and antivirals, the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to ravage health care institutions worldwide. Previously, we generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent or luciferase reporter proteins to track viral infection in vitro and/or in vivo. However, these rSARS-CoV-2 are restricted to express only a single fluorescent or a luciferase reporter gene, limiting or preventing their use in specific in vitro assays and/or in vivo studies. To overcome this limitation, we have engineered a rSARS-CoV-2 expressing both fluorescent (mCherry) and luciferase (Nluc) genes and demonstrated its feasibility to study the biology of SARS-CoV-2 in vitro and/or in vivo, including the identification and characterization of neutralizing antibodies and/or antivirals. Using rodent models, we visualized SARS-CoV-2 infection and transmission through in vivo imaging systems (IVIS).


Asunto(s)
COVID-19 , Cricetinae , Ratones , Animales , Humanos , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , Replicación Viral , Antivirales/farmacología , Luciferasas/genética , Luciferasas/farmacología , Anticuerpos Neutralizantes , Ratones Transgénicos
16.
Nat Commun ; 13(1): 4416, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906230

RESUMEN

SARS-CoV-2 variants of concern (VOC) have triggered infection waves. Oral antivirals such as molnupiravir promise to improve disease management, but efficacy against VOC delta was questioned and potency against omicron is unknown. This study evaluates molnupiravir against VOC in human airway epithelium organoids, ferrets, and a lethal Roborovski dwarf hamster model of severe COVID-19-like lung injury. VOC were equally inhibited by molnupiravir in cells and organoids. Treatment reduced shedding in ferrets and prevented transmission. Pathogenicity in dwarf hamsters was VOC-dependent and highest for delta, gamma, and omicron. All molnupiravir-treated dwarf hamsters survived, showing reduction in lung virus load from one (delta) to four (gamma) orders of magnitude. Treatment effect size varied in individual dwarf hamsters infected with omicron and was significant in males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir in human trials and alerts that benefit must be reassessed in vivo as VOC evolve.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Citidina/análogos & derivados , Hurones , Humanos , Hidroxilaminas , Pulmón , Masculino
17.
DNA Cell Biol ; 41(8): 699-704, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35788144

RESUMEN

The COVID-19 pandemic has highlighted the urgent need for the development of broad-spectrum antivirals to enhance preparedness against future spillover of zoonotic viruses with pandemic potential into the human population. Currently, the direct-acting orally available SARS-CoV-2 inhibitors molnupiravir and paxlovid are approved for human use under emergency use authorization. A promising next-generation therapeutic candidate is the orally available ribonucleoside analog 4'-fluorouridine (4'-FlU) that had potent antiviral efficacy against different viral targets, including SARS-CoV-2 in human organoids and animal models. Although a nucleoside analog inhibitor such as molnupiravir that targets the viral RNA-dependent RNA polymerase (RdRP) complex, 4'-FlU showed a distinct mechanism of activity, delayed chain termination, compared with molnupiravir's induction of viral error catastrophe. This review will focus on some currently approved and emerging medicines developed against SARS-CoV-2, examining their potential to form a pharmacological first-line defense against zoonotic viruses with pandemic potential.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Pandemias , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , SARS-CoV-2 , Nucleótidos de Uracilo
18.
Sci Adv ; 8(25): eabo2236, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749502

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infections in infants and the immunocompromised, yet no efficient therapeutic exists. We have identified the AVG class of allosteric inhibitors of RSV RNA synthesis. Here, we demonstrate through biolayer interferometry and in vitro RNA-dependent RNA polymerase (RdRP) assays that AVG compounds bind to the viral polymerase, stalling the polymerase in initiation conformation. Resistance profiling revealed a unique escape pattern, suggesting a discrete docking pose. Affinity mapping using photoreactive AVG analogs identified the interface of polymerase core, capping, and connector domains as a molecular target site. A first-generation lead showed nanomolar potency against RSV in human airway epithelium organoids but lacked in vivo efficacy. Docking pose-informed synthetic optimization generated orally efficacious AVG-388, which showed potent efficacy in the RSV mouse model when administered therapeutically. This study maps a druggable target in the RSV RdRP and establishes clinical potential of the AVG chemotype against RSV disease.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Animales , Humanos , Ratones , Conformación Molecular , ARN Polimerasa Dependiente del ARN , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/genética
19.
bioRxiv ; 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35313573

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to a worldwide Coronavirus Disease 2019 (COVID-19) pandemic. Despite high efficacy of the authorized vaccines, protection against the surging variants of concern (VoC) was less robust. Live-attenuated vaccines (LAV) have been shown to elicit robust and long-term protection by induction of host innate and adaptive immune responses. We sought to develop a COVID-19 LAV by generating 3 double open reading frame (ORF)-deficient recombinant (r)SARS-CoV-2 simultaneously lacking two accessory open reading frame (ORF) proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). Here, we report that these double ORF-deficient rSARS-CoV-2 have slower replication kinetics and reduced fitness in cultured cells as compared to their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2 showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against different SARS-CoV-2 VoC, and also activated viral component-specific T-cell responses. Notably, the double ORF-deficient rSARS-CoV-2 were able to protect, as determined by inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2. Collectively, our results demonstrate the feasibility to implement these double ORF-deficient rSARS-CoV-2 as safe, stable, immunogenic and protective LAV for the prevention of SARS-CoV-2 infection and associated COVID-19 disease.

20.
bioRxiv ; 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35169793

RESUMEN

SARS-CoV-2 variants of concern (VOC) have triggered distinct infection waves in the coronavirus disease 2019 (COVID-19) pandemic, culminating in currently all-time high incidence rates of VOC omicron. Orally available direct-acting antivirals such as molnupiravir promise to improve disease management and limit SARS-CoV-2 spread. However, molnupiravir efficacy against VOC delta was questioned based on clinical trial results and its potency against omicron is unknown. This study evaluates molnupiravir against a panel of relevant VOC in three efficacy models: primary human airway epithelium organoids, the ferret model of upper respiratory disease, and a lethal Roborovski dwarf hamster efficacy model of severe COVID-19-like acute lung injury. All VOC were equally efficiently inhibited by molnupiravir in cultured cells and organoids. Treatment consistently reduced upper respiratory VOC shedding in ferrets and prevented viral transmission. Pathogenicity in the dwarf hamsters was VOC-dependent and highest for gamma, omicron, and delta with fulminant lung histopathology. Oral molnupiravir started 12 hours after infection resulted in complete survival of treated dwarf hamsters independent of challenge VOC. However, reduction in lung virus differed VOC-dependently, ranging from one (delta) to four (gamma) orders of magnitude compared to vehicle-treated animals. Dwarf hamsters infected with VOC omicron showed significant individual variation in response to treatment. Virus load reduction was significant in treated males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir seen in human trials and alerts that therapeutic benefit of approved antivirals must be continuously reassessed in vivo as new VOC emerge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...