Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Metab ; 4(6): 739-758, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35760869

RESUMEN

Mitochondria are the main consumers of oxygen within the cell. How mitochondria sense oxygen levels remains unknown. Here we show an oxygen-sensitive regulation of TFAM, an activator of mitochondrial transcription and replication, whose alteration is linked to tumours arising in the von Hippel-Lindau syndrome. TFAM is hydroxylated by EGLN3 and subsequently bound by the von Hippel-Lindau tumour-suppressor protein, which stabilizes TFAM by preventing mitochondrial proteolysis. Cells lacking wild-type VHL or in which EGLN3 is inactivated have reduced mitochondrial mass. Tumorigenic VHL variants leading to different clinical manifestations fail to bind hydroxylated TFAM. In contrast, cells harbouring the Chuvash polycythaemia VHLR200W mutation, involved in hypoxia-sensing disorders without tumour development, are capable of binding hydroxylated TFAM. Accordingly, VHL-related tumours, such as pheochromocytoma and renal cell carcinoma cells, display low mitochondrial content, suggesting that impaired mitochondrial biogenesis is linked to VHL tumorigenesis. Finally, inhibiting proteolysis by targeting LONP1 increases mitochondrial content in VHL-deficient cells and sensitizes therapy-resistant tumours to sorafenib treatment. Our results offer pharmacological avenues to sensitize therapy-resistant VHL tumours by focusing on the mitochondria.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Enfermedad de von Hippel-Lindau , Proteasas ATP-Dependientes , Carcinoma de Células Renales/genética , Humanos , Neoplasias Renales/genética , Proteínas Mitocondriales , Biogénesis de Organelos , Oxígeno , Enfermedad de von Hippel-Lindau/genética
3.
Mol Biol Cell ; 33(11): ar99, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35731557

RESUMEN

Microglia are the primary resident innate immune cells of the CNS. They possess branched, motile cell processes that are important for their cellular functions. To study the pathways that control microglial morphology and motility under physiological and disease conditions, it is necessary to quantify microglial morphology and motility precisely and reliably. Several image analysis approaches are available for the quantification of microglial morphology and motility. However, they are either not automated, not freely accessible, and/or limited in the number of morphology and motility parameters that can be assessed. Thus, we have developed MotiQ, an open-source, freely accessible software for automated quantification of microglial motility and morphology. MotiQ allows quantification of a diverse set of cellular motility and morphology parameters, including the parameters that have become the gold standard in the microglia field. We demonstrate that MotiQ can be applied to in vivo, ex vivo, and in vitro data from confocal, epifluorescence, or two-photon microscopy, and we compare its results to other analysis approaches. We suggest MotiQ as a versatile and customizable tool to study microglia.


Asunto(s)
Microglía , Movimiento Celular/fisiología , Microglía/metabolismo
4.
FASEB J ; 33(5): 6412-6430, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30779881

RESUMEN

Growth hormone (GH) has an important function as an insulin antagonist with elevated insulin sensitivity evident in humans and mice lacking a functional GH receptor (GHR). We sought the molecular basis for this sensitivity by utilizing a panel of mice possessing specific deletions of GHR signaling pathways. Metabolic clamps and glucose homeostasis tests were undertaken in these obese adult C57BL/6 male mice, which indicated impaired hepatic gluconeogenesis. Insulin sensitivity and glucose disappearance rate were enhanced in muscle and adipose of mice lacking the ability to activate the signal transducer and activator of transcription (STAT)5 via the GHR (Ghr-391-/-) as for GHR-null (GHR-/-) mice. These changes were associated with a striking inhibition of hepatic glucose output associated with altered glycogen metabolism and elevated hepatic glycogen content during unfed state. The enhanced hepatic insulin sensitivity was associated with increased insulin receptor ß and insulin receptor substrate 1 activation along with activated downstream protein kinase B signaling cascades. Although phosphoenolpyruvate carboxykinase (Pck)-1 expression was unchanged, its inhibitory acetylation was elevated because of decreased sirtuin-2 expression, thereby promoting loss of PCK1. Loss of STAT5 signaling to defined chromatin immunoprecipitation targets would further increase lipogenesis, supporting hepatosteatosis while lowering glucose output. Finally, up-regulation of IL-15 expression in muscle, with increased secretion of adiponectin and fibroblast growth factor 1 from adipose tissue, is expected to promote insulin sensitivity.-Chhabra, Y., Nelson, C. N., Plescher, M., Barclay, J. L., Smith, A. G., Andrikopoulos, S., Mangiafico, S., Waxman, D. J., Brooks, A. J., Waters, M. J. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity.


Asunto(s)
Proteínas Portadoras , Hígado Graso , Resistencia a la Insulina/genética , Hígado , Obesidad , Factor de Transcripción STAT5/deficiencia , Transducción de Señal/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Glucosa/genética , Glucosa/metabolismo , Glucógeno/genética , Glucógeno/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Factor de Transcripción STAT5/metabolismo
5.
EMBO Mol Med ; 11(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30617153

RESUMEN

Reactive astrogliosis is a hallmark of Alzheimer's disease (AD), but its role for disease initiation and progression has remained incompletely understood. We here show that the transcription factor Stat3 (signal transducer and activator of transcription 3), a canonical inducer of astrogliosis, is activated in an AD mouse model and human AD Therefore, using a conditional knockout approach, we deleted Stat3 specifically in astrocytes in the APP/PS1 model of AD We found that Stat3-deficient APP/PS1 mice show decreased ß-amyloid levels and plaque burden. Plaque-close microglia displayed a more complex morphology, internalized more ß-amyloid, and upregulated amyloid clearance pathways in Stat3-deficient mice. Moreover, astrocyte-specific Stat3-deficient APP/PS1 mice showed decreased pro-inflammatory cytokine activation and lower dystrophic neurite burden, and were largely protected from cerebral network imbalance. Finally, Stat3 deletion in astrocytes also strongly ameliorated spatial learning and memory decline in APP/PS1 mice. Importantly, these protective effects on network dysfunction and cognition were recapitulated in APP/PS1 mice systemically treated with a preclinical Stat3 inhibitor drug. In summary, our data implicate Stat3-mediated astrogliosis as an important therapeutic target in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Astrocitos/patología , Proliferación Celular , Factor de Transcripción STAT3/análisis , Animales , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Noqueados , Factor de Transcripción STAT3/deficiencia
6.
J Exp Med ; 215(6): 1649-1663, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29724785

RESUMEN

Astrocytic hyperactivity is an important contributor to neuronal-glial network dysfunction in Alzheimer's disease (AD). We have previously shown that astrocyte hyperactivity is mediated by signaling through the P2Y1 purinoreceptor (P2Y1R) pathway. Using the APPPS1 mouse model of AD, we here find that chronic intracerebroventricular infusion of P2Y1R inhibitors normalizes astroglial and neuronal network dysfunction, as measured by in vivo two-photon microscopy, augments structural synaptic integrity, and preserves hippocampal long-term potentiation. These effects occur independently from ß-amyloid metabolism or plaque burden but are associated with a higher morphological complexity of periplaque reactive astrocytes, as well as reduced dystrophic neurite burden and greater plaque compaction. Importantly, APPPS1 mice chronically treated with P2Y1R antagonists, as well as APPPS1 mice carrying an astrocyte-specific genetic deletion (Ip3r2-/-) of signaling pathways downstream of P2Y1R activation, are protected from the decline of spatial learning and memory. In summary, our study establishes the restoration of network homoeostasis by P2Y1R inhibition as a novel treatment target in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Cognición , Red Nerviosa/fisiopatología , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Receptores Purinérgicos P2Y1/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Adenosina Difosfato/uso terapéutico , Enfermedad de Alzheimer/patología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/patología , Humanos , Memoria/efectos de los fármacos , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Placa Amiloide/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacología , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
7.
Glia ; 66(7): 1464-1480, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29493017

RESUMEN

Microglia, the central nervous system resident innate immune cells, cluster around Aß plaques in Alzheimer's disease (AD). The activation phenotype of these plaque-associated microglial cells, and their differences to microglia distant to Aß plaques, are incompletely understood. We used novel three-dimensional cell analysis software to comprehensively analyze the morphological properties of microglia in the TgCRND8 mouse model of AD in spatial relation to Aß plaques. We found strong morphological changes exclusively in plaque-associated microglia, whereas plaque-distant microglia showed only minor changes. In addition, patch-clamp recordings of microglia in acute cerebral slices of TgCRND8 mice revealed increased K+ currents in plaque-associated but not plaque-distant microglia. Within the subgroup of plaque-associated microglia, two different current profiles were detected. One subset of cells displayed only increased inward currents, while a second subset showed both increased inward and outward currents, implicating that the plaque microenvironment differentially impacts microglial ion channel expression. Using pharmacological channel blockers, multiplex single-cell PCR analysis and RNA fluorescence in situ hybridization, we identified Kir and Kv channel types contributing to the in- and outward K+ conductance in plaque-associated microglia. In summary, we have identified a previously unrecognized level of morphological and electrophysiological heterogeneity of microglia in relation to amyloid plaques, suggesting that microglia may display multiple activation states in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Microglía/patología , Microglía/fisiología , Placa Amiloide/patología , Placa Amiloide/fisiopatología , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Cationes Monovalentes/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Potasio/metabolismo , Canales de Potasio/metabolismo , Técnicas de Cultivo de Tejidos
8.
Nat Commun ; 7: 10662, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26868506

RESUMEN

mTORC1 promotes cell growth and is therefore inactivated upon unfavourable growth conditions. Signalling pathways downstream of most cellular stresses converge on TSC1/2, which serves as an integration point that inhibits mTORC1. The TSC1/2 complex was shown to translocate to lysosomes to inactivate mTORC1 in response to two stresses: amino-acid starvation and growth factor removal. Whether other stresses also regulate TSC2 localization is not known. How TSC2 localization responds to combinations of stresses and other stimuli is also unknown. We show that both amino acids and growth factors are required simultaneously to maintain TSC2 cytoplasmic; when one of the two is missing, TSC2 relocalizes to lysosomes. Furthermore, multiple different stresses that inhibit mTORC1 also drive TSC2 lysosomal accumulation. Our findings indicate that lysosomal recruitment of TSC2 is a universal response to stimuli that inactivate mTORC1, and that the presence of any single stress is sufficient to cause TSC2 lysosomal localization.


Asunto(s)
Citoplasma/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Aminoácidos/metabolismo , Animales , Western Blotting , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Microscopía Confocal , Células 3T3 NIH , Proteína 2 del Complejo de la Esclerosis Tuberosa
9.
Sci Rep ; 5: 13828, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26345496

RESUMEN

mTOR complex 1 (mTORC1) regulates cell growth and metabolism. mTORC1 activity is regulated via integration of positive growth-promoting stimuli and negative stress stimuli. One stress cells confront in physiological and pathophysiological contexts is hyperosmotic stress. The mechanism by which hyperosmotic stress regulates mTORC1 activity is not well understood. We show here that mild hyperosmotic stress induces a rapid and reversible inactivation of mTORC1 via a mechanism involving multiple upstream signaling pathways. We find that hyperosmotic stress causes dynamic changes in TSC2 phosphorylation by upstream kinases, such as Akt, thereby recruiting TSC2 from the cytoplasm to lysosomes where it acts on Rheb, the direct activator of mTORC1. This work puts together a signaling pathway whereby hyperosmotic stress inactivates mTORC1.


Asunto(s)
Complejos Multiproteicos/metabolismo , Presión Osmótica , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Línea Celular , Humanos , Lisosomas/metabolismo , Toxinas Marinas , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Oxazoles/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...