Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Appl Spectrosc ; 77(11): 1311-1324, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774686

RESUMEN

The molecular basis of bone structure and strength is mineralized collagen fibrils at the submicron scale (∼500 nm). Recent advances in optical photothermal infrared (O-PTIR) spectroscopy allow the investigation of bone composition with unprecedented submicron spatial resolution, which may provide new insights into factors contributing to underlying bone function. Here, we investigated (i) whether O-PTIR-derived spectral parameters correlated to standard attenuated total reflection (ATR) Fourier transform infrared spectroscopy spectral data and (ii) whether O-PTIR-derived spectral parameters, including heterogeneity of tissue, contribute to the prediction of proximal femoral bone stiffness. Analysis of serially demineralized bone powders showed a significant correlation (r = 0.96) between mineral content quantified using ATR and O-PTIR spectroscopy, indicating the validity of this technique in assessing bone mineralization. Using femoral neck sections, the principal component analysis showed that differences between O-PTIR and ATR spectra were primarily attributable to the phosphate ion (PO4) absorbance band, which was typically shifter toward higher wavenumbers in O-PTIR spectra. Additionally, significant correlations were found between hydrogen phosphate (HPO4) content (r = 0.75) and carbonate (CO3) content (r = 0.66) quantified using ATR and O-PTIR spectroscopy, strengthening the validity of this method to assess bone mineral composition. O-PTIR imaging of individual trabeculae at 500 nm pixel resolution illustrated differences in submicron composition in the femoral neck from bones with different stiffness. O-PTIR analysis showed a significant negative correlation (r = -0.71) between bone stiffness and mineral maturity, reflective of newly formed bone being an important contributor to bone function. Finally, partial least squares regression analysis showed that combining multiple O-PTIR parameters (HPO4 content and heterogeneity, collagen integrity, and CO3 content) could significantly predict proximal femoral stiffness (R2 = 0.74, error = 9.7%) more accurately than using ATR parameters. Additionally, we describe new findings in the effects of bone tissue orientation in the O-PTIR spectra. Overall, this study highlights a new application of O-PTIR spectroscopy that may provide new insights into molecular-level factors underlying bone mechanical competence.


Asunto(s)
Huesos , Minerales , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Fosfatos , Colágeno
2.
Front Bioeng Biotechnol ; 10: 885369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082171

RESUMEN

Standard assessment of cartilage repair progression by visual arthroscopy can be subjective and may result in suboptimal evaluation. Visible-near infrared (Vis-NIR) fiber optic spectroscopy of joint tissues, including articular cartilage and subchondral bone, provides an objective approach for quantitative assessment of tissue composition. Here, we applied this technique in the 350-2,500 nm spectral region to identify spectral markers of osteochondral tissue during repair with the overarching goal of developing a new approach to monitor repair of cartilage defects in vivo. Full thickness chondral defects were created in Yucatan minipigs using a 5-mm biopsy punch, and microfracture (MFx) was performed as a standard technique to facilitate repair. Tissues were evaluated at 1 month (in adult pigs) and 3 months (in juvenile pigs) post-surgery by spectroscopy and histology. After euthanasia, Vis-NIR spectra were collected in situ from the defect region. Additional spectroscopy experiments were carried out in vitro to aid in spectral interpretation. Osteochondral tissues were dissected from the joint and evaluated using the conventional International Cartilage Repair Society (ICRS) II histological scoring system, which showed lower scores for the 1-month than the 3-month repair tissues. In the visible spectral region, hemoglobin absorbances at 540 and 570 nm were significantly higher in spectra from 1-month repair tissue than 3-month repair tissue, indicating a reduction of blood in the more mature repair tissue. In the NIR region, we observed qualitative differences between the two groups in spectra taken from the defect, but differences did not reach significance. Furthermore, spectral data also indicated that the hydrated environment of the joint tissue may interfere with evaluation of tissue water absorbances in the NIR region. Together, these data provide support for further investigation of the visible spectral region for assessment of longitudinal repair of cartilage defects, which would enable assessment during routine arthroscopy, particularly in a hydrated environment.

3.
Biol Open ; 11(6)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35608281

RESUMEN

The synovial cavity and its fluid are essential for joint function and lubrication, but their developmental biology remains largely obscure. Here, we analyzed E12.5 to E18.5 mouse embryo hindlimbs and discovered that cavitation initiates around E15.0 with emergence of multiple, discrete, µm-wide tissue discontinuities we term microcavities in interzone, evolving into a single joint-wide cavity within 12 h in knees and within 72-84 h in interphalangeal joints. The microcavities were circumscribed by cells as revealed by mTmG imaging and exhibited a carbohydrate and protein content based on infrared spectral imaging at micro and nanoscale. Accounting for differing cavitation kinetics, we found that the growing femur and tibia anlagen progressively flexed at the knee over time, with peak angulation around E15.5 exactly when the full knee cavity consolidated; however, interphalangeal joint geometry changed minimally over time. Indeed, cavitating knee interzone cells were elongated along the flexion angle axis and displayed oblong nuclei, but these traits were marginal in interphalangeal cells. Conditional Gdf5Cre-driven ablation of Has2 - responsible for production of the joint fluid component hyaluronic acid (HA) - delayed the cavitation process. Our data reveal that cavitation is a stepwise process, brought about by sequential action of microcavities, skeletal flexion and elongation, and HA accumulation. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Miembro Posterior , Articulaciones , Animales , Embrión de Mamíferos , Miembro Posterior/embriología , Articulaciones/embriología , Ratones
4.
Analyst ; 147(8): 1730-1741, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35343541

RESUMEN

Tissue engineering of cartilage for tissue repair has many challenges, including the inability to assess when the developing construct has reached compositional maturity for implantation. The goal of this study was to provide a novel analytical approach to nondestructively assess tissue engineered cartilage (TEC) during in vitro development. We applied attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to establish a quick and straightforward method to evaluate consumption of glucose and secretion of the metabolite lactate in the culture media, processes that are associated with tissue development. Using a series of standards, we showed by principal component analysis (PCA) that ATR-FTIR data was able to distinguish culture media with varying amounts of glucose and lactate. The 2nd derivative spectra displayed specific peaks of glucose at 1035 cm-1 and lactate at 1122 cm-1, and both the spectral first principal component (PC-1) scores and the 1122/1035 peak ratio very strongly correlated with the concentration of these components. TEC was prepared using chondrogenic cells grown in hydrogels, and analyzed for cell viability, distribution, and formation of proteoglycan (PG, a major cartilage protein). ATR-FTIR data of the cell culture media harvested during TEC development showed that the spectral PC-1 and the 1122/1035 peak ratio could significantly distinguish cultures with different amounts of constructs (1, 3 or 5 constructs per well) or with constructs at different developmental stages (3 or 5 weeks of culture). Interestingly, we also found that the PG content of the TEC was significantly correlated with both spectral PC-1 (r = -0.79) and the 1122/1035 peak ratio (r = 0.80). Therefore, monitoring relative glucose and lactate concentrations in cell culture media by ATR-FTIR provides a novel nondestructive approach to assess development of TEC.


Asunto(s)
Cartílago , Ingeniería de Tejidos , Biomarcadores/análisis , Técnicas de Cultivo de Célula , Medios de Cultivo , Análisis de Fourier , Glucosa/análisis , Ácido Láctico/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ingeniería de Tejidos/métodos
5.
Minim Invasive Ther Allied Technol ; 31(7): 1112-1121, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35301909

RESUMEN

INTRODUCTION: Many percutaneous procedures utilize surgical needles to extract tissue samples in biopsy or to apply specific cancer treatments. A design of mosquito-inspired surgical needles was proposed to improve the efficacy of these procedures by reducing the needle insertion force and the resulting tissue damage. The focus of this study is to assess tissue damage caused by the insertion of a mosquito-inspired needle into soft tissues. MATERIAL AND METHODS: In this work, the geometric features and the dynamic stinging (insertion) mechanism of mosquito proboscis were mimicked for the design of 3D-manufactured bioinspired needle prototypes. A specially designed test setup was developed to measure the insertion force in bovine liver tissue. The histology assessment based on hematoxylin and eosin staining and image analysis was conducted to determine the bovine liver tissue damage. RESULTS: It was observed that the insertion force can be reduced by up to 39% and the bovine liver tissue damage was decreased by 27% using the mosquito-inspired needles when compared with using the standard needles. CONCLUSION: The findings from this study suggested that the bioinspired needle design has great potential to advance surgical needles for more effective and less invasive percutaneous procedures.


Asunto(s)
Hígado , Agujas , Animales , Bovinos , Eosina Amarillenta-(YS) , Hematoxilina , Hígado/cirugía
6.
Appl Spectrosc ; 76(4): 416-427, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34643134

RESUMEN

Applications of vibrational spectroscopy to assess bone disease and therapeutic interventions are continually advancing, with tissue mineral and protein composition frequently investigated. Here, we used two spectroscopic approaches for determining bone composition in a mouse model (oim) of the brittle bone disease osteogenesis imperfecta (OI) with and without antiresorptive agent treatment (alendronate, or ALN, and RANK-Fc). Near-infrared (NIR) spectral analysis using a fiber optic probe and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) mode were applied to investigate bone composition, including water, mineral, and protein content. Spectral parameters revealed differences among the control wildtype (WT) and OIM groups. NIR spectral analysis of protein and water showed that OIM mouse humerii had ∼50% lower protein and ∼50% higher overall water content compared to WT bone. Moreover, some OIM-treated groups showed a reduction in bone water compared to OIM controls, approximating values observed in WT bone. Differences in bone quality based on increased mineral content and reduced carbonate content were also found between some groups of treated OIM and WT bone, but crystallinity did not differ among all groups. The spectroscopically determined parameters were evaluated for correlations with gold-standard mechanical testing values to gain insight into how composition influenced bone strength. As expected, bone mechanical strength parameters were consistently up to threefold greater in WT mice compared to OIM groups, except for stiffness in the ALN-treated OIM groups. Furthermore, bone stiffness, maximum load, and post-yield displacement showed the strongest correlations with NIR-determined protein content (positive correlations) and bound-water content (negative correlations). These results demonstrate that in this study, NIR spectral parameters were more sensitive to bone composition differences than ATR parameters, highlighting the potential of this nondestructive approach for screening of bone diseases and therapeutic efficacy in pre-clinical models.


Asunto(s)
Osteogénesis Imperfecta , Alendronato/uso terapéutico , Animales , Huesos , Modelos Animales de Enfermedad , Ratones , Minerales/uso terapéutico , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/metabolismo , Agua
7.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810030

RESUMEN

This study evaluated the direct effect of a phytochemical, hesperidin, on pre-osteoblast cell function as well as osteogenesis and collagen matrix quality, as there is little known about hesperidin's influence in mineralized tissue formation and regeneration. Hesperidin was added to a culture of MC3T3-E1 cells at various concentrations. Cell proliferation, viability, osteogenic gene expression and deposited collagen matrix analyses were performed. Treatment with hesperidin showed significant upregulation of osteogenic markers, particularly with lower doses. Mature and compact collagen fibrils in hesperidin-treated cultures were observed by picrosirius red staining (PSR), although a thinner matrix layer was present for the higher dose of hesperidin compared to osteogenic media alone. Fourier-transform infrared spectroscopy indicated a better mineral-to-matrix ratio and matrix distribution in cultures exposed to hesperidin and confirmed less collagen deposited with the 100-µM dose of hesperidin. In vivo, hesperidin combined with a suboptimal dose of bone morphogenetic protein 2 (BMP2) (dose unable to promote healing of a rat mandible critical-sized bone defect) in a collagenous scaffold promoted a well-controlled (not ectopic) pattern of bone formation as compared to a large dose of BMP2 (previously defined as optimal in healing the critical-sized defect, although of ectopic nature). PSR staining of newly formed bone demonstrated that hesperidin can promote maturation of bone organic matrix. Our findings show, for the first time, that hesperidin has a modulatory role in mineralized tissue formation via not only osteoblast cell differentiation but also matrix organization and matrix-to-mineral ratio and could be a potential adjunct in regenerative bone therapies.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Hesperidina/farmacología , Osteogénesis/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea , Línea Celular , Células Cultivadas , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Ratas
8.
Foods ; 10(3)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800851

RESUMEN

Recently, two chicken breast fillet abnormalities, termed Wooden Breast (WB) and Spaghetti Meat (SM), have become a challenge for the chicken meat industry. The two abnormalities share some overlapping morphological features, including myofiber necrosis, intramuscular fat deposition, and collagen fibrosis, but display very different textural properties. WB has a hard, rigid surface, while the SM has a soft and stringy surface. Connective tissue is affected in both WB and SM, and accordingly, this study's objective was to investigate the major component of connective tissue, collagen. The collagen structure was compared with normal (NO) fillets using histological methods and Fourier transform infrared (FTIR) microspectroscopy and imaging. The histology analysis demonstrated an increase in the amount of connective tissue in the chicken abnormalities, particularly in the perimysium. The WB displayed a mixture of thin and thick collagen fibers, whereas the collagen fibers in SM were thinner, fewer, and shorter. For both, the collagen fibers were oriented in multiple directions. The FTIR data showed that WB contained more ß-sheets than the NO and the SM fillets, whereas SM fillets expressed the lowest mature collagen fibers. This insight into the molecular changes can help to explain the underlying causes of the abnormalities.

9.
Molecules ; 26(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572384

RESUMEN

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.


Asunto(s)
Huesos/citología , Cartílago/citología , Tejido Conectivo/fisiología , Espectrometría Raman/métodos , Animales , Huesos/química , Cartílago/química , Tecnología de Fibra Óptica , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía Infrarroja Corta
10.
Nat Protoc ; 16(2): 1297-1329, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462441

RESUMEN

Near-infrared (NIR) spectroscopy is a powerful analytical method for rapid, non-destructive and label-free assessment of biological materials. Compared to mid-infrared spectroscopy, NIR spectroscopy excels in penetration depth, allowing intact biological tissue assessment, albeit at the cost of reduced molecular specificity. Furthermore, it is relatively safe compared to Raman spectroscopy, with no risk of laser-induced photothermal damage. A typical NIR spectroscopy workflow for biological tissue characterization involves sample preparation, spectral acquisition, pre-processing and analysis. The resulting spectrum embeds intrinsic information on the tissue's biomolecular, structural and functional properties. Here we demonstrate the analytical power of NIR spectroscopy for exploratory and diagnostic applications by providing instructions for acquiring NIR spectra, maps and images in biological tissues. By adapting and extending this protocol from the demonstrated application in connective tissues to other biological tissues, we expect that a typical NIR spectroscopic study can be performed by a non-specialist user to characterize biological tissues in basic research or clinical settings. We also describe how to use this protocol for exploratory study on connective tissues, including differentiating among ligament types, non-destructively monitoring changes in matrix formation during engineered cartilage development, mapping articular cartilage proteoglycan content across bovine patella and spectral imaging across the depth-wise zones of articular cartilage and subchondral bone. Depending on acquisition mode and experiment objectives, a typical exploratory study can be completed within 6 h, including sample preparation and data analysis.


Asunto(s)
Tejido Conectivo/metabolismo , Tejido Conectivo/fisiología , Espectroscopía Infrarroja Corta/métodos , Animales , Cartílago Articular/química , Células del Tejido Conectivo/citología , Humanos , Proteoglicanos/química , Manejo de Especímenes/métodos
11.
Cartilage ; 13(2_suppl): 722S-733S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33100027

RESUMEN

OBJECTIVE: Articular cartilage exists in a hypoxic environment, which motivates the use of hypoxia-simulating chemical agents to improve matrix production in cartilage tissue engineering. The aim of this study was to investigate whether dimethyloxalylglycine (DMOG), a HIF-1α stabilizer, would improve matrix production in 3-dimensional (3D) porcine synovial-derived mesenchymal stem cell (SYN-MSC) co-culture with chondrocytes. DESIGN: Pellet cultures and scaffold-based engineered cartilage were grown in vitro to determine the impact of chemically simulated hypoxia on 2 types of 3D cell culture. DMOG-treated groups were exposed to DMOG from day 14 to day 21 and grown up to 6 weeks with n = 3 per condition and time point. RESULTS: The addition of DMOG resulted in HIF-1α stabilization in the exterior of the engineered constructs, which resulted in increased regional type II collagen deposition, but the stabilization did not translate to overall increased extracellular matrix deposition. There was no increase in HIF-1α stabilization in the pellet cultures. DMOG treatment also negatively affected the mechanical competency of the engineered cartilage. CONCLUSIONS: Despite previous studies that demonstrated the efficacy of DMOG, here, short-term treatment with DMOG did not have a uniformly positive impact on the chondrogenic capacity of SYN-MSCs in either pellet culture or in scaffold-based engineered cartilage, as evidenced by reduced matrix production. Such 3D constructs generally have a naturally occurring hypoxic center, which allows for the stabilization of HIF-1α in the interior tissue. Thus, short-term addition of DMOG may not further improve this in cartilage tissue engineered constructs.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos , Aminoácidos Dicarboxílicos , Animales , Condrogénesis , Porcinos , Ingeniería de Tejidos/métodos
12.
Bone ; 143: 115774, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33271401

RESUMEN

Ultrashort echo time (UTE) magnetic resonance imaging (MRI) measures proton signals in cortical bone from two distinct water pools, bound water, or water that is tightly bound to bone matrix, and pore water, or water that is freely moving in the pore spaces in bone. By isolating the signal contribution from the pore water pool, UTE biomarkers can directly quantify cortical bone porosity in vivo. The Porosity Index (PI) is one non-invasive, clinically viable UTE-derived technique that has shown strong associations in the tibia with µCT porosity and other UTE measures of bone water. However, the efficacy of the PI biomarker has never been examined in the proximal femur, which is the site of the most catastrophic osteoporotic fractures. Additionally, the loads experienced during a sideways fall are complex and the femoral neck is difficult to image with UTE, so the usefulness of the PI in the femur was unknown. Therefore, the aim of this study was to examine the relationships between the PI measure in the proximal cortical shaft of human cadaveric femora specimens compared to (1) QCT-derived bone mineral density (BMD) and (2) whole bone stiffness obtained from mechanical testing mimicking a sideways fall. Fifteen fresh, frozen whole cadaveric femora specimens (age 72.1 ± 15.0 years old, 10 male, 5 female) were scanned on a clinical 3-T MRI using a dual-echo UTE sequence. Specimens were then scanned on a clinical CT scanner to measure volumetric BMD (vBMD) and then non-destructively mechanically tested in a sideways fall configuration. The PI in the cortical shaft demonstrated strong correlations with bone stiffness (r = -0.82, P = 0.0014), CT-derived vBMD (r = -0.64, P = 0.0149), and with average cortical thickness (r = -0.60, P = 0.0180). Furthermore, a hierarchical regression showed that PI was a strong predictor of bone stiffness which was independent of the other parameters. The findings from this study validate the MRI-derived porosity index as a useful measure of whole-bone mechanical integrity and stiffness.


Asunto(s)
Fémur , Imagen por Resonancia Magnética , Anciano , Anciano de 80 o más Años , Densidad Ósea , Cadáver , Femenino , Fémur/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Minerales , Porosidad , Microtomografía por Rayos X
13.
Analyst ; 145(10): 3713-3724, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32342066

RESUMEN

Water is an important component of bone and plays a key role in its mechanical and structural integrity. Water molecules in bone are present in different locations, including loosely or tightly bound to the matrix and/or mineral (biological apatite) phases. Identification of water location and interactions with matrix components impact bone function but have been challenging to assess. Here, we used near infrared (NIR) spectroscopy to identify loosely and tightly bound water present in cortical bone. In hydrated samples, NIR spectra have two primary water absorption bands at frequencies of ∼5200 and 7000 cm-1. Using lyophilization and hydrogen-deuterium exchange assays, we showed that these absorption bands are primarily associated with loosely bound bone water. Using further demineralization assays, thermal denaturation, and comparison to standards, we found that these absorption bands have underlying components associated with water molecules tightly bound to bone. In dehydrated samples, the peak at ∼5200 cm-1 was assigned to a combination of water tightly bound to collagen and to mineral, whereas the peak at 7000 cm-1 was exclusively associated with tightly bound mineral water. We also found significant positive correlations between the NIR mineral absorption bands and the mineral content as determined by an established mid infrared spectroscopic parameter, phosphate/amide I. Moreover, the NIR water data showed correlation trends with tissue mineral density (TMD) in cortical bone tissues. These observations reveal the ability of NIR spectroscopy to non-destructively identify loosely and tightly bound water in bone, which could have further applications in biomineralization and biomedical studies.


Asunto(s)
Hueso Cortical/metabolismo , Espectroscopía Infrarroja Corta , Agua/metabolismo , Animales , Densidad Ósea , Colágeno/metabolismo , Hueso Cortical/fisiología , Humanos , Porcinos
14.
Tissue Eng Part C Methods ; 26(4): 225-238, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131710

RESUMEN

Near infrared (NIR) spectroscopy using a fiber optic probe shows great promise for the nondestructive in situ monitoring of tissue engineered construct development; however, the NIR evaluation of matrix components in samples with high water content is challenging, as water absorbances overwhelm the spectra. In this study, we established approaches by which NIR spectroscopy can be used to select optimal individual engineered hydrogel constructs based on matrix content and mechanical properties. NIR spectroscopy of dry standard compounds allowed identification of several absorbances related to collagen and/or proteoglycan (PG), of which only two could be identified in spectra obtained from hydrated constructs, at ∼5940 and 5800 cm-1. In dry sample mixtures, the ratio of these peaks correlated positively to collagen and negatively to PG. In NIR spectra from engineered cartilage hydrogels, these peaks reflected higher collagen and PG content and dynamic modulus values, permitting the differentiation of constructs with poor and good matrix development. Similarly, the increasing baseline offset in raw NIR spectra also reflected matrix development in hydrated constructs. However, weekly monitoring of NIR spectra and the peaks at ∼5940 and 5800 cm-1 was not adequate to differentiate individual constructs based on matrix composition. Interestingly, changes in the baseline offset of raw spectra could be used to evaluate the growth trajectory of individual constructs. These results demonstrate an optimal approach for the use of fiber optic NIR spectroscopy for in situ monitoring of the development of engineered cartilage, which will aid in identifying individual constructs for implantation. Impact statement A current demand in tissue engineering is the establishment of nondestructive approaches to evaluate construct development during growth in vitro. In this article, we demonstrate original nondestructive approaches by which fiber optic NIR spectroscopy can be used to assess matrix (PG and collagen) formation and mechanical properties in hydrogel-based constructs. Our data provide a cohesive molecular-based approach for in situ longitudinal evaluation of construct development during growth in vitro. The establishment of these approaches is a valuable step toward the real-time identification and selection of constructs with optimal properties, which may lead to successful tissue integration upon in vivo implantation.


Asunto(s)
Cartílago Articular/citología , Condrocitos/citología , Colágeno/química , Matriz Extracelular/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Espectroscopía Infrarroja Corta , Porcinos
15.
J Biophotonics ; 13(4): e201960172, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31957205

RESUMEN

Approaches for noninvasive bone quality assessment are of great clinical need, particularly in individuals that require close monitoring of disease progression. X-ray measurements are standard approaches to assess bone quality; however, they have several disadvantages. Here, a nonionizing approach for noninvasive assessment of the second metacarpal bone based on near infrared (NIR) spectroscopy was investigated. Transcutaneous bone signal detection was experimentally confirmed with cadaveric hand data, and Monte Carlo modeling further indicated that 50% of the measured signals arise from bone. Spectral data were collected via a NIR fiber optic from the bone of individuals with osteogenesis imperfecta, a disease marked by frequent bone fractures and fragility. Multiple significant correlations were found between spectral parameters related to water, protein and fat, and standard bone quality parameters obtained by X-ray measurements. The results from this preliminary study highlight the potential application of NIR spectroscopy for the noninvasive assessment of bone quality.


Asunto(s)
Tecnología de Fibra Óptica , Espectroscopía Infrarroja Corta , Huesos/diagnóstico por imagen , Humanos , Proteínas , Agua
16.
Analyst ; 145(3): 764-776, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31755889

RESUMEN

Bone mineral development has been described to proceed through an amorphous precursor prior to apatite crystallization. However, further analytical approaches are necessary to identify specific markers of amorphous mineral components in bone. Here, we establish an original Fourier transform infrared (FTIR) spectroscopy approach to allow the specific identification of the amorphous and/or crystalline nature of bone mineral. Using a series of standards, our results demonstrate that obtaining the second derivative of the FTIR spectra could reveal a peak specifically corresponding to amorphous calcium phosphate (ACP) at ∼992 cm-1. The intensity of this peak was strongly correlated to ACP content in standard mixtures. The analysis of a variety of bones showed that a clear ACP peak could be identified as a specific marker of the existence of an amorphous mineral component in developing bones. In contrast, the ACP peak was not detected in the mature bones. Moreover, subjecting developing bones to ex vivo crystallization conditions led to a clear reduction of the ACP peak, further substantiating the conversion of amorphous mineral precursor into mature apatite crystals. Analysis of mineralization in osteogenic cell cultures corroborated our observations, showing the presence of ACP as a major transient component in early mineralization, but not in the mature matrix. Additionally, FTIR imaging revealed that ACP was present in areas of matrix development, distributed around the edges of mineralizing nodules. Using an original analytical approach, this work provides strong evidence to support that bone mineral development is initiated by an amorphous precursor prior to apatite crystallization.


Asunto(s)
Huesos/química , Fosfatos de Calcio/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Huesos/metabolismo , Línea Celular , Ratones , Ratones Endogámicos C57BL , Osteoblastos/química , Osteoblastos/citología , Osteoblastos/metabolismo , Ratas , Ratas Sprague-Dawley , Pez Cebra
17.
Bone Rep ; 11: 100213, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31372372

RESUMEN

The MRI-derived porosity index (PI) is a non-invasively obtained biomarker based on an ultrashort echo time sequence that images both bound and pore water protons in bone, corresponding to water bound to organic collagenous matrix and freely moving water, respectively. This measure is known to strongly correlate with the actual volumetric cortical bone porosity. However, it is unknown whether PI may also be able to directly quantify bone organic composition and/or mechanical properties. We investigated this in human cadaveric tibiae by comparing PI values to near infrared spectral imaging (NIRSI) compositional data and mechanical compression data. Data were obtained from a cohort of eighteen tibiae from male and female donors with a mean ±â€¯SD age of 70 ±â€¯21 years. Biomechanical stiffness in compression and NIRSI-derived collagen and bound water content all had significant inverse correlations with PI (r = -0.79, -0.73, and -0.95 and p = 0.002, 0.007, and <0.001, respectively). The MRI-derived bone PI alone was a moderate predictor of bone stiffness (R 2  = 0.63, p = 0.002), and multivariate analyses showed that neither cortical bone cross-sectional area nor NIRSI values improved bone stiffness prediction compared to PI alone. However, NIRSI-obtained collagen and water data together were a moderate predictor of bone stiffness (R2 = 0.52, p = 0.04). Our data validates the MRI-derived porosity index as a strong predictor of organic composition of bone and a moderate predictor of bone stiffness, and also provides preliminary evidence that NIRSI measures may be useful in future pre-clinical studies on bone pathology.

18.
Sci Rep ; 9(1): 10199, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308386

RESUMEN

We have designed an environmentally-controlled chamber for near infrared spectroscopic imaging (NIRSI) to monitor changes in cortical bone water content, an emerging biomarker related to bone quality assessment. The chamber is required to ensure repeatable spectroscopic measurements of tissues without the influence of atmospheric moisture. A calibration curve to predict gravimetric water content from human cadaveric cortical bone was created using NIRSI data obtained at six different lyophilization time points. Partial least squares (PLS) models successfully predicted bone water content that ranged from 0-10% (R = 0.96, p < 0.05, root mean square error of prediction (RMSEP) = 7.39%), as well as in the physiologic range of 4-10% of wet tissue weight (R = 0.87, p < 0.05, RMSEP = 14.5%). Similar results were obtained with univariate and bivariate regression models for prediction of water in the 0-10% range. Further, we identified two new NIR bone absorbances, at 6560 cm-1 and 6688 cm-1, associated with water and collagen respectively. Such data will be useful in pre-clinical studies that investigate changes in bone quality with disease, aging and with therapeutic use.


Asunto(s)
Huesos/diagnóstico por imagen , Espectroscopía Infrarroja Corta/métodos , Calibración , Liofilización/métodos , Humanos , Análisis de los Mínimos Cuadrados , Agua/química
19.
Cartilage ; 10(4): 480-490, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29690771

RESUMEN

OBJECTIVE: Autologous articular cartilage (AC) harvested for repair procedures of high weight bearing (HWB) regions of the femoral condyles is typically obtained from low weight bearing (LWB) regions, in part due to the lack of non-destructive techniques for cartilage composition assessment. Here, we demonstrate that infrared fiber optic spectroscopy can be used to non-destructively evaluate variations in compositional and mechanical properties of AC across LWB and HWB regions. DESIGN: AC plugs (N = 72) were harvested from the patellofemoral groove of juvenile bovine stifle joints, a LWB region, and femoral condyles, a HWB region. Near-infrared (NIR) and mid-infrared (MIR) fiber optic spectra were collected from plugs, and indentation tests were performed to determine the short-term and equilibrium moduli, followed by gravimetric water and biochemical analysis. RESULTS: LWB tissues had a significantly greater amount of water determined by NIR and gravimetric assay. The moduli generally increased in tissues from the patellofemoral groove to the condyles, with HWB condyle cartilage having significantly higher moduli. A greater amount of proteoglycan content was also found in HWB tissues, but no differences in collagen content. In addition, NIR-determined water correlated with short-term modulus and proteoglycan content (R = -0.40 and -0.31, respectively), and a multivariate model with NIR data was able to predict short-term modulus within 15% error. CONCLUSIONS: The properties of tissues from LWB regions differ from HWB tissues and can be determined non-destructively by infrared fiber optic spectroscopy. Clinicians may be able to use this modality to assess AC prior to harvesting osteochondral grafts for focal defect repair.


Asunto(s)
Cartílago Articular/química , Cartílago Articular/fisiología , Soporte de Peso/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Agua Corporal , Bovinos , Proteoglicanos/análisis , Espectroscopía Infrarroja Corta/métodos , Rodilla de Cuadrúpedos/química , Rodilla de Cuadrúpedos/fisiología
20.
Ann N Y Acad Sci ; 1442(1): 104-117, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30058180

RESUMEN

Tissue engineering (TE) approaches are being widely investigated for repair of focal defects in articular cartilage. However, the amount and/or type of extracellular matrix (ECM) produced in engineered constructs does not always correlate with the resultant mechanical properties. This could be related to the specifics of ECM distribution throughout the construct. Here, we present data on the amount and distribution of the primary components of native and engineered cartilage (i.e., collagen, proteoglycan (PG), and water) using Fourier transform infrared imaging spectroscopy (FT-IRIS). These data permit visualization of matrix and water at 25 µm resolution throughout the tissues, and subsequent colocalization of these components using image processing methods. Native and engineered cartilage were cryosectioned at 80 µm for evaluation by FT-IRIS in the mid-infrared (MIR) and near-infrared (NIR) regions. PG distribution correlated strongly with water in native and engineered cartilage, supporting the binding of water to PG in both tissues. In addition, NIR-derived matrix peaks correlated significantly with MIR-derived collagen peaks, confirming the interpretation that these absorbances arise primarily from collagen and not PG. The combined use of MIR and NIR permits assessment of ECM and water spatial distribution at the micron level, which may aid in improved development of TE techniques.


Asunto(s)
Cartílago Articular/ultraestructura , Ingeniería de Tejidos/métodos , Animales , Cartílago Articular/metabolismo , Bovinos , Matriz Extracelular/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía Infrarroja Corta/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...