Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770000

RESUMEN

Reanodizing metal underlayers through porous anodic alumina has already been used extensively to fabricate ordered columns of different metal oxides. Here, we present similar 3D multilayered nanostructures with unprecedented complexity. Two-level 3D column-like nanofilms have been synthesized by anodizing an Al/Nb metal layer in aqueous oxalic acid for forming the first level, and an Al/Ta layer in aqueous tartaric acid for forming the second level of the structure. Both levels were then reanodized in aqueous boric acid. The Ta layer deposited on partially dissolved porous anodic alumina of the first level, with protruding tops of niobia columns, acquired a unique hexagonally-packed structure. The morphology of the first and second levels was determined using scanning electron microscopy. Prolonged etching for 24 h in a 50%wt aqueous phosphoric acid was used to remove the porous anodic alumina. The formation mechanism of aluminum phosphates on the second-level columns in the process of long-time cold etching is considered. The model for the growth of columns on a Ta hexagonally-packed structure of the second level is proposed and described. The described approach can be applied to create 3D two- or three-level column-like systems from various valve metals (Ta, Nb, W, Hf, V, Ti), their combinations and alloys, with adjustable column sizes and scaling. The results of optical simulation show a high sensitivity of two-level column-like 3D nanofilms to biomedical objects and liquids. Among potential applications of these two-level column-like 3D nanofilms are photonic crystals for full-color displays, chemical sensors and biosensor, solar cells and thermoresponsive shape memory polymers.

2.
Materials (Basel) ; 14(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947086

RESUMEN

Magnetron-sputtered thin films of titanium and zirconium, with a thickness of 150 nm, were hydrogenated at atmospheric pressure and a temperature of 703 K, then anodized in boric, oxalic, and tartaric acid aqueous solutions, in potentiostatic, galvanostatic, potentiodynamic, and combined modes. A study of the thickness distribution of the elements in fully anodized hydrogenated zirconium samples, using Auger electron spectroscopy, indicates the formation of zirconia. The voltage- and current-time responses of hydrogenated titanium anodizing were investigated. In this work, fundamental possibility and some process features of anodizing hydrogenated metals were demonstrated. In the case of potentiodynamic anodizing at 0.6 M tartaric acid, the increase in titanium hydrogenation time, from 30 to 90 min, leads to a decrease in the charge of the oxidizing hydrogenated metal at an anodic voltage sweep rate of 0.2 V·s-1. An anodic voltage sweep rate in the range of 0.05-0.5 V·s-1, with a hydrogenation time of 60 min, increases the anodizing efficiency (charge reduction for the complete oxidation of the hydrogenated metal). The detected radical differences in the time responses and decreased efficiency of the anodic process during the anodizing of the hydrogenated thin films, compared to pure metals, are explained by the presence of hydrogen in the composition of the samples and the increased contribution of side processes, due to the possible features of the formed oxide morphologies.

3.
Materials (Basel) ; 14(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34501208

RESUMEN

The influence of arsenazo-I additive on electrochemical anodizing of pure aluminum foil in malonic acid was studied. Aluminum dissolution increased with increasing arsenazo-I concentration. The addition of arsenazo-I also led to an increase in the volume expansion factor up to 2.3 due to the incorporation of organic compounds and an increased number of hydroxyl groups in the porous aluminum oxide film. At a current density of 15 mA·cm-2 and an arsenazo-I concentration 3.5 g·L-1, the carbon content in the anodic alumina of 49 at. % was achieved. An increase in the current density and concentration of arsenazo-I caused the formation of an arsenic-containing compound with the formula Na1,5Al2(OH)4,5(AsO4)3·7H2O in the porous aluminum oxide film phase. These film modifications cause a higher number of defects and, thus, increase the ionic conductivity, leading to a reduced electric field in galvanostatic anodizing tests. A self-adjusting growth mechanism, which leads to a higher degree of self-ordering in the arsenazo-free electrolyte, is not operative under the same conditions when arsenazo-I is added. Instead, a dielectric breakdown mechanism was observed, which caused the disordered porous aluminum oxide film structure.

4.
Micromachines (Basel) ; 12(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063841

RESUMEN

Three types of niobia nanostructured films (so-called native, planarized, and column-like) were formed on glass substrates by porous alumina assisted anodizing in a 0.2 M aqueous solution of oxalic acid in a potentiostatic mode at a 53 V and then reanodizing in an electrolyte containing 0.5 M boric acid and 0.05 M sodium tetraborate in a potentiodynamic mode by raising the voltage to 230 V, and chemical post-processing. Anodic behaviors, morphology, and optical properties of the films have been investigated. The interference pattern of native film served as the basis for calculating the effective refractive index which varies within 1.75-1.54 in the wavelength range 190-1100 nm. Refractive index spectral characteristics made it possible to distinguish a number of absorbance bands of the native film. Based on the analysis of literature data, the identified oxide absorbance bands were assigned. The effective refractive index of native film was also calculated using the effective-medium models, and was in the range of 1.63-1.68. The reflectance spectra of all films show peaks in short- and long-wave regions. The presence of these peaks is due to the periodically varying refractive index in the layers of films in two dimensions. FDTD simulation was carried out and the morphology of a potential 2-D photonic crystal with 92% (wavelength 462 nm) reflectance, based on the third type of films, was proposed.

5.
Materials (Basel) ; 14(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562047

RESUMEN

The volumetric growth, composition, and morphology of porous alumina films fabricated by reduced temperature 280 K galvanostatic anodizing of aluminum foil in 0.4, 1.0, and 2.0 M aqueous sulfuric acid with 0.5-10 mA·cm-2 current densities were investigated. It appeared that an increase in the solution concentration from 0.4 to 2 M has no significant effect on the anodizing rate, but leads to an increase in the porous alumina film growth. The volumetric growth coefficient increases from 1.26 to 1.67 with increasing current density from 0.5 to 10 mA·cm-2 and decreases with increasing solution concentration from 0.4 to 2.0 M. In addition, in the anodized samples, metallic aluminum phases are identified, and a tendency towards a decrease in the aluminum content with an increase in solution concentration is observed. Anodizing at 0.5 mA·cm-2 in 2.0 M sulfuric acid leads to formation of a non-typical nanostructured porous alumina film, consisting of ordered hemispheres containing radially diverging pores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA