Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(23): 5247-5256.e4, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37972589

RESUMEN

Understanding marine predator distributions is an essential component of arresting their catastrophic declines.1,2,3,4 In temperate, polar, and upwelling seas, predictable oceanographic features can aggregate migratory predators, which benefit from site-based protection.5,6,7,8 In more oligotrophic tropical waters, however, it is unclear whether environmental conditions create similar multi-species hotspots. We track the non-breeding movements and habitat preferences of a tropical seabird assemblage (n = 348 individuals, 9 species, and 10 colonies in the western Indian Ocean), which supports globally important biodiversity.9,10,11,12 We mapped species richness from tracked populations and then predicted the same diversity measure for all known Indian Ocean colonies. Most species had large non-breeding ranges, low or variable residency patterns, and specific habitat preferences. This in turn revealed that maximum species richness covered >3.9 million km2, with no focused aggregations, in stark contrast to large-scale tracking studies in all other ocean basins.5,6,7,13,14 High species richness was captured by existing marine protected areas (MPAs) in the region; however, most occurred in the unprotected high seas beyond national jurisdictions. Seabirds experience cumulative anthropogenic impacts13 and high mortality15,16 during non-breeding. Therefore, our results suggest that seabird conservation in the tropical Indian Ocean requires an ocean-wide perspective, including high seas legislation.17 As restoration actions improve the outlook for tropical seabirds on land18,19,20,21,22 and environmental change reshapes the habitats that support them at sea,15,16 appropriate marine conservation will be crucial for their long-term recovery and whole ecosystem restoration.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Aves , Conservación de los Recursos Naturales , Océano Índico
2.
J Proteome Res ; 12(9): 4122-35, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23837631

RESUMEN

No biomarker has yet been discovered to identify the reproductive status of the endangered leatherback sea turtle (Dermochelys coriacea). Although vitellogenin (VTG) could be used for this, its sequence is not known in D. coriacea and no quantitative assay has been carried out in this species to date. Using de novo sequencing-based proteomics, we unambiguously characterized sequences of two different VTG isoforms that we named Dc-VTG1 and Dc-VTG2. To our knowledge, this is the first clear evidence of different VTG isoforms and the structural characterization of derived yolk proteins in reptiles. This work illustrates how massive de novo sequencing can characterize novel sequences when working on "exotic" nonmodel species in which even nucleotide sequences are not available. We developed assays for absolute quantitation of these two isoforms using selected reaction monitoring (SRM) mass spectrometry, thus providing the first SRM assays developed specifically for a nonsequenced species. Plasma levels of Dc-VTG1 and Dc-VTG2 decreased as the nesting season proceeded, and were closely related to the increased levels of reproductive effort. The SRM assays developed here therefore provide an original and efficient approach for the reliable monitoring of reproduction cycles not only in D. coriacea, but potentially in other turtle species.


Asunto(s)
Proteínas de Reptiles/química , Tortugas/fisiología , Vitelogeninas/química , Secuencia de Aminoácidos , Animales , Femenino , Datos de Secuencia Molecular , Comportamiento de Nidificación , Isoformas de Proteínas/química , Proteómica , Proteínas de Reptiles/sangre , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem , Vitelogeninas/sangre
3.
Physiol Biochem Zool ; 86(4): 385-97, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799833

RESUMEN

Organisms compensate for reproduction costs through two major strategies: capital breeders store body reserves before reproduction and do not feed during the breeding season, whereas income breeders adjust their food intake depending on concurrent reproductive needs. Sea turtles are commonly considered capital breeders. Yet recent biometric and behavioral studies have suggested that sea turtles may in fact feed during reproduction. We tested this hypothesis in the leatherback turtle Dermochelys coriacea, nesting in French Guiana. Our study is based on the innovative use of longitudinal monitoring for morphological (body size, body mass, and body condition) and physiological (plasma glucose, triacylglycerides, urea, calcium, and hematocrit) measurements in 35 females throughout the 2006 nesting season. During their 71-d nesting period, leatherbacks lost a mean (±SE) of [Formula: see text] kg (i.e., ∼11% of their initial body mass of [Formula: see text] kg). Simultaneously, a significant decrease in plasma concentrations of glucose, triacylglycerides, and urea was observed throughout the nesting season, following typical patterns reported in other long-fasting animals that rely on lipid body stores. At the end of the nesting season, the interindividual variability in plasma concentrations was very low, which may characterize some minimum thresholds associated with the end of reproduction. We also identified a minimum necessary threshold for female body condition at the onset of reproduction; the body condition of any females beginning the nesting period below this threshold decreased dramatically. This study makes a compelling case that, in French Guiana, gravid leatherback females are anorexic during the nesting season (i.e., leatherback turtles are capital breeders). We further highlight the mechanisms that prevent this multiparous reptile from jeopardizing its own body condition while not feeding during reproduction.


Asunto(s)
Conducta Alimentaria , Comportamiento de Nidificación , Tortugas/fisiología , Animales , Análisis Químico de la Sangre , Composición Corporal , Tamaño Corporal , Femenino , Guyana Francesa , Estado Nutricional , Reproducción
4.
PLoS One ; 8(3): e58061, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516429

RESUMEN

The leatherback turtle Dermochelys coriacea is the most widely distributed sea turtle species in the world. It exhibits complex life traits: female homing and migration, migrations of juveniles and males that remain poorly known, and a strong climatic influence on resources, breeding success and sex-ratio. It is consequently challenging to understand population dynamics. Leatherbacks are critically endangered, yet the group from the Northwest Atlantic is currently considered to be under lower risk than other populations while hosting some of the largest rookeries. Here, we investigated the genetic diversity and the demographic history of contrasted rookeries from this group, namely two large nesting populations in French Guiana, and a smaller one in the French West Indies. We used 10 microsatellite loci, of which four are newly isolated, and mitochondrial DNA sequences of the control region and cytochrome b. Both mitochondrial and nuclear markers revealed that the Northwest Atlantic stock of leatherbacks derives from a single ancestral origin, but show current genetic structuration at the scale of nesting sites, with the maintenance of migrants amongst rookeries. Low nuclear genetic diversities are related to founder effects that followed consequent bottlenecks during the late Pleistocene/Holocene. Most probably in response to climatic oscillations, with a possible influence of early human hunting, female effective population sizes collapsed from 2 million to 200. Evidence of founder effects and high numbers of migrants make it possible to reconsider the population dynamics of the species, formerly considered as a metapopulation model: we propose a more relaxed island model, which we expect to be a key element in the currently observed recovering of populations. Although these Northwest Atlantic rookeries should be considered as a single evolutionary unit, we stress that local conservation efforts remain necessary since each nesting site hosts part of the genetic diversity and species history.


Asunto(s)
Variación Genética , Tortugas/genética , Animales , Evolución Biológica , Cruzamiento , ADN Mitocondrial , Femenino , Guyana Francesa , Haplotipos , Masculino , Repeticiones de Microsatélite , Densidad de Población , Dinámica Poblacional
5.
PLoS One ; 7(7): e40855, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22808278

RESUMEN

A major interest has recently emerged in understanding how telomere shortening, mechanism triggering cell senescence, is linked to organism ageing and life history traits in wild species. However, the links between telomere length and key history traits such as reproductive performances have received little attention and remain unclear to date. The leatherback turtle Dermochelys coriacea is a long-lived species showing rapid growth at early stages of life, one of the highest reproductive outputs observed in vertebrates and a dichotomised reproductive pattern related to migrations lasting 2 or 3 years, supposedly associated with different environmental conditions. Here we tested the prediction of blood telomere shortening with age in this species and investigated the relationship between blood telomere length and reproductive performances in leatherback turtles nesting in French Guiana. We found that blood telomere length did not differ between hatchlings and adults. The absence of blood telomere shortening with age may be related to an early high telomerase activity. This telomere-restoring enzyme was formerly suggested to be involved in preventing early telomere attrition in early fast-growing and long-lived species, including squamate reptiles. We found that within one nesting cycle, adult females having performed shorter migrations prior to the considered nesting season had shorter blood telomeres and lower reproductive output. We propose that shorter blood telomeres may result from higher oxidative stress in individuals breeding more frequently (i.e., higher costs of reproduction) and/or restoring more quickly their body reserves in cooler feeding areas during preceding migration (i.e., higher foraging costs). This first study on telomeres in the giant leatherback turtle suggests that blood telomere length predicts not only survival chances, but also reproductive performances. Telomeres may therefore be a promising new tool to evaluate individual reproductive quality which could be useful in such species of conservation concern.


Asunto(s)
Longevidad/fisiología , Telómero/metabolismo , Tortugas/fisiología , Animales , Tamaño de la Nidada , ADN/sangre , Femenino , Guyana Francesa , Modelos Biológicos , Reproducción/fisiología , Homeostasis del Telómero , Tortugas/sangre
6.
J Anim Ecol ; 81(2): 341-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22007680

RESUMEN

1. The assessment of species extinction risk has been well established for some time now. Assessing the potential for recovery in endangered species is however much more challenging, because complementary approaches are required to detect reliable signals of positive trends. 2. This study combines genetics, demography and behavioural data at three different time-scales to assess historical and recent population changes and evidence of reproductive synchrony in a small population of olive ridley sea turtle Lepidochelys olivacea. Lepidochelys is considered as the most extraordinary example of reproductive synchrony in reptiles, yet to date, it has only been reported in large populations. 3. Using Bayesian coalescent-based models on microsatellite nuclear DNA variability, we demonstrate that effective population size in olive ridleys nesting in French Guiana has dramatically declined by 99% over the last 20 centuries. This low current population size is further illustrated by the absence of genetic mitochondrial DNA diversity in the present nesting population. Yet, monitoring of nesting sites in French Guiana suggests a possible recovery of the population over the last decade. 4. Satellite telemetry shows that over the first 14 days of their 28-days inter-nesting interval, i.e. when eggs maturation is likely to occur, gravid females disperse over the continental shelf. They then gather together with a striking spatiotemporal consistency close to the nesting site, where they later emerge for their second nesting event. 5. Our results therefore suggest that reproductive synchrony also occurs in small populations. Olive ridleys may ensure this synchrony by adjusting the duration of the second half of their inter-nesting interval prior to landing, possibly through social mediation. 6. Such reproductive synchrony may be related to the maintenance of some species-specific strategy despite former collapse and may contribute to the present population recovery. The gregarious behaviour of reproductive individuals close to shore where human-induced perturbations occur is however a cause for conservation concern for this still poorly known species.


Asunto(s)
Variación Genética , Comportamiento de Nidificación , Tortugas/fisiología , Animales , Teorema de Bayes , Núcleo Celular/genética , Citocromos b/genética , ADN Mitocondrial/genética , Femenino , Guyana Francesa , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Movimiento , Dinámica Poblacional , Tecnología de Sensores Remotos , Tortugas/genética
7.
J Exp Biol ; 214(Pt 23): 4010-20, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22071193

RESUMEN

Marine turtles are globally threatened. Crucial for the conservation of these large ectotherms is a detailed knowledge of their energy relationships, especially their at-sea metabolic rates, which will ultimately define population structure and size. Measuring metabolic rates in free-ranging aquatic animals, however, remains a challenge. Hence, it is not surprising that for most marine turtle species we know little about the energetic requirements of adults at sea. Recently, accelerometry has emerged as a promising tool for estimating activity-specific metabolic rates of animals in the field. Accelerometry allows quantification of the movement of animals (ODBA/PDBA, overall/partial dynamic body acceleration), which, after calibration, might serve as a proxy for metabolic rate. We measured oxygen consumption rates (V(O(2))) of adult green turtles (Chelonia mydas; 142.1±26.9 kg) at rest and when swimming within a 13 m-long swim channel, using flow-through respirometry. We investigated the effect of water temperature (T(w)) on turtle and tested the hypothesis that turtle body acceleration can be used as a proxy for V(O(2)). Mean mass-specific V(O(2)) (sV(O(2))) of six turtles when resting at a T(w) of 25.8±1.0°C was 0.50±0.09 ml min(-1) kg(-0.83). sV(O(2))increased significantly with T(w) and activity level. Changes in sV(O(2)) were paralleled by changes in respiratory frequency (f(R)). Deploying bi-axial accelerometers in conjunction with respirometry, we found a significant positive relationship between sV(O(2)) and PDBA that was modified by T(w). The resulting predictive equation was highly significant (r(2)=0.83, P<0.0001) and associated error estimates were small (mean algebraic error 3.3%), indicating that body acceleration is a good predictor of V(O(2)) in green turtles. Our results suggest that accelerometry is a suitable method to investigate marine turtle energetics at sea.


Asunto(s)
Aceleración , Envejecimiento/fisiología , Metabolismo Energético/fisiología , Natación/fisiología , Tortugas/fisiología , Animales , Femenino , Consumo de Oxígeno/fisiología , Reproducibilidad de los Resultados , Respiración , Estaciones del Año , Temperatura , Agua
8.
J Exp Biol ; 214(Pt 20): 3474-9, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21957111

RESUMEN

Typical chelonians have a rigid carapace and plastron that form a box-like structure that constrains several aspects of their physiology and ecology. The leatherback sea turtle, Dermochelys coriacea, has a flexible bony carapace strengthened by seven longitudinal ridges, whereas the plastron is reduced to an elliptical outer bony structure, so that the ventrum has no bony support. Measurements of the shell were made on adult female leatherbacks studied on the feeding grounds of waters off Nova Scotia (NS) and on breeding beaches of French Guiana (FG) to examine whether foraging and/or breeding turtles alter carapace size and/or shape. NS turtles exhibited greater mass and girth for a given curved carapace length (CCL) than FG turtles. Girth:CCL ratios rose during the feeding season, indicating increased girth. Measurements were made of the direct (straight) and surface (curved) distances between the medial longitudinal ridge and first right-hand longitudinal ridge (at 50% CCL). In NS turtles, the ratio of straight to curved inter-ridge distances was significantly higher than in FG turtles, indicating distension of the upper surfaces of the NS turtles between the ridges. FG females laid 11 clutches in the breeding season; although CCL and curved carapace width remained stable, girth declined between each nesting episode, indicating loss of mass. Straight to curved inter-ridge distance ratios did not change significantly during the breeding season, indicating loss of dorsal blubber before the onset of breeding. The results demonstrate substantial alterations in size and shape of female D. coriacea over periods of weeks to months in response to alterations in nutritional and reproductive status.


Asunto(s)
Estructuras Animales/anatomía & histología , Tortugas/anatomía & histología , Animales , Peso Corporal , Cruzamiento , Femenino , Guyana Francesa , Masculino , Nueva Escocia , Estaciones del Año , Agua de Mar , Tortugas/fisiología
9.
PLoS One ; 5(11): e13908, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085472

RESUMEN

BACKGROUND: Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. METHODOLOGY/PRINCIPAL FINDINGS: Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. CONCLUSIONS/SIGNIFICANCE: Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural plasticity in Atlantic leatherback turtles makes species-targeted conservation strategies challenging and stresses the need for a larger dataset (>100 individuals) for providing general recommendations in terms of conservation.


Asunto(s)
Migración Animal/fisiología , Buceo/fisiología , Natación/fisiología , Tortugas/fisiología , Animales , Océano Atlántico , Ecosistema , Femenino , Geografía , Masculino , Actividad Motora/fisiología , Comportamiento de Nidificación/fisiología , Oceanografía , Comunicaciones por Satélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...