Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 224(3)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37170598

RESUMEN

Ultraviolet (UV) light primarily causes C > T substitutions in lesion-forming dipyrimidine sequences. However, many of the key driver mutations in melanoma do not fit this canonical UV signature, but are instead caused by T > A, T > C, or C > A substitutions. To what extent exposure to the UVB or UVA spectrum of sunlight can induce these noncanonical mutation classes, and the molecular mechanism involved is unclear. Here, we repeatedly exposed wild-type or repair-deficient yeast (Saccharomyces cerevisiae) to UVB or UVA light and characterized the resulting mutations by whole genome sequencing. Our data indicate that UVB induces C > T and T > C substitutions in dipyrimidines, and T > A substitutions that are often associated with thymine-adenine (TA) sequences. All of these mutation classes are induced in nucleotide excision repair-deficient cells and show transcriptional strand asymmetry, suggesting they are caused by helix-distorting UV photoproducts. In contrast, UVA exposure induces orders of magnitude fewer mutations with a distinct mutation spectrum. UVA-induced mutations are elevated in Ogg1-deficient cells, and the resulting spectrum consists almost entirely of C > A/G > T mutations, indicating they are likely derived from oxidative guanine lesions. These mutations show replication asymmetry, with elevated G > T mutations on the leading strand, suggesting there is a strand bias in the removal or bypass of guanine lesions during replication. Finally, we develop a mutation reporter to show that UVA induces a G > T reversion mutation in yeast that mimics the oncogenic NRAS Q61K mutation in melanoma. Taken together, these findings indicate that UVA and UVB exposure can induce many of the noncanonical mutation classes that cause driver mutations in melanoma.


Asunto(s)
Melanoma , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Daño del ADN , Mutación , Mutagénesis , Reparación del ADN/genética , Rayos Ultravioleta/efectos adversos , Melanoma/genética , Guanina
2.
PLoS Genet ; 18(3): e1010085, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35263330

RESUMEN

Helix-distorting DNA lesions, including ultraviolet (UV) light-induced damage, are repaired by the global genomic-nucleotide excision repair (GG-NER) and transcription coupled-nucleotide excision repair (TC-NER) pathways. Previous studies have shown that histone post-translational modifications (PTMs) such as histone acetylation and methylation can promote GG-NER in chromatin. Whether histone PTMs also regulate the repair of DNA lesions by the TC-NER pathway in transcribed DNA is unknown. Here, we report that histone H3 K36 methylation (H3K36me) by the Set2 histone methyltransferase in yeast regulates TC-NER. Mutations in Set2 or H3K36 result in UV sensitivity that is epistatic with Rad26, the primary TC-NER factor in yeast, and cause a defect in the repair of UV damage across the yeast genome. We further show that mutations in Set2 or H3K36 in a GG-NER deficient strain (i.e., rad16Δ) partially rescue its UV sensitivity. Our data indicate that deletion of SET2 rescues UV sensitivity in a GG-NER deficient strain by activating cryptic antisense transcription, so that the non-transcribed strand (NTS) of yeast genes is repaired by TC-NER. These findings indicate that Set2 methylation of H3K36 establishes transcriptional asymmetry in repair by promoting canonical TC-NER of the transcribed strand (TS) and suppressing cryptic TC-NER of the NTS.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , ADN/metabolismo , Reparación del ADN/genética , Histona Metiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Metiltransferasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
4.
Nat Cell Biol ; 23(6): 608-619, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108662

RESUMEN

Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms.


Asunto(s)
Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Factor 1 de Elongación Peptídica/metabolismo , Elongación de la Transcripción Genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Evolución Molecular , Células HCT116 , Humanos , Factor 1 de Elongación Peptídica/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Ubiquitinación
5.
DNA Repair (Amst) ; 73: 91-98, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30473425

RESUMEN

The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.


Asunto(s)
Reparación del ADN , Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , ADN Helicasas/metabolismo , Eliminación de Gen , Sitios Genéticos/genética , Sitios Genéticos/efectos de la radiación , Genómica , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Mutación , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...