Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38803224

RESUMEN

The ubiquitin (Ub) code denotes the complex Ub architectures, including Ub chains of different lengths, linkage types, and linkage combinations, which enable ubiquitination to control a wide range of protein fates. Although many linkage-specific interactors have been described, how interactors are able to decode more complex architectures is not fully understood. We conducted a Ub interactor screen, in humans and yeast, using Ub chains of varying lengths, as well as homotypic and heterotypic branched chains of the two most abundant linkage types-lysine 48-linked (K48) and lysine 63-linked (K63) Ub. We identified some of the first K48/K63-linked branch-specific Ub interactors, including histone ADP-ribosyltransferase PARP10/ARTD10, E3 ligase UBR4, and huntingtin-interacting protein HIP1. Furthermore, we revealed the importance of chain length by identifying interactors with a preference for Ub3 over Ub2 chains, including Ub-directed endoprotease DDI2, autophagy receptor CCDC50, and p97 adaptor FAF1. Crucially, we compared datasets collected using two common deubiquitinase inhibitors-chloroacetamide and N-ethylmaleimide. This revealed inhibitor-dependent interactors, highlighting the importance of inhibitor consideration during pulldown studies. This dataset is a key resource for understanding how the Ub code is read.


Asunto(s)
Lisina , Ubiquitina , Ubiquitinación , Humanos , Ubiquitina/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
2.
J Biomol NMR ; 77(5-6): 261-269, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966668

RESUMEN

Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8-10 nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data.


Asunto(s)
Ubiquitina , Modelos Moleculares , Espectroscopía de Resonancia por Spin del Electrón/métodos , Resonancia Magnética Nuclear Biomolecular , Ubiquitina/metabolismo , Dominio Catalítico
3.
EMBO J ; 40(6): e106094, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33576509

RESUMEN

The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin-conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin-binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63-linked polyubiquitin and facilitates the selective assembly of K48/K63-branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.


Asunto(s)
Poliubiquitina/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/fisiología , Simulación por Computador , Modelos Estructurales , Dominios Proteicos , Proteómica , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Enzimas Ubiquitina-Conjugadoras/genética
4.
Structure ; 26(2): 249-258.e4, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29358025

RESUMEN

Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation.


Asunto(s)
Ubiquitina/metabolismo , Ubiquitinación/fisiología , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica
5.
Mol Cell ; 62(6): 918-928, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264873

RESUMEN

Ubiquitin conjugation is an essential process modulating protein function in eukaryotic cells. Surprisingly, little is known about how the progressive assembly of ubiquitin chains is managed by the responsible enzymes. Only recently has ubiquitin binding activity emerged as an important factor in chain formation. The Ubc7 activator Cue1 carries a ubiquitin binding CUE domain that substantially stimulates K48-linked polyubiquitination mediated by Ubc7. Our results from NMR-based analysis and in vitro ubiquitination reactions point out that two parameters accelerate ubiquitin chain assembly: the increasing number of CUE binding sites and the position of CUE binding within a growing chain. In particular, interactions with a ubiquitin moiety adjacent to the acceptor ubiquitin facilitate chain elongation. These data indicate a mechanism for ubiquitin binding in which Cue1 positions Ubc7 and the distal acceptor ubiquitin for rapid polyubiquitination. Disrupting this mechanism results in dysfunction of the ERAD pathway by a delayed turnover of substrates.


Asunto(s)
Proteínas Portadoras/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana/metabolismo , Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Proteínas Portadoras/química , Proteínas Portadoras/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética
6.
Aging (Albany NY) ; 5(4): 234-69, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23553280

RESUMEN

Macromitophagy controls mitochondrial quality and quantity. It involves the sequestration of dysfunctional or excessive mitochondria within double-membrane autophagosomes, which then fuse with the vacuole/lysosome to deliver these mitochondria for degradation. To investigate a physiological role of macromitophagy in yeast, we examined how theatg32Δ-dependent mutational block of this process influences the chronological lifespan of cells grown in a nutrient-rich medium containing low (0.2%) concentration of glucose. Under these longevity-extending conditions of caloric restriction (CR) yeast cells are not starving. We also assessed a role of macromitophagy in lifespan extension by lithocholic acid (LCA), a bile acid that prolongs yeast longevity under CR conditions. Our findings imply that macromitophagy is a longevity assurance process underlying the synergistic beneficial effects of CR and LCA on yeast lifespan. Our analysis of how the atg32Δ mutation influences mitochondrial morphology, composition and function revealed that macromitophagy is required to maintain a network of healthy mitochondria. Our comparative analysis of the membrane lipidomes of organelles purified from wild-type and atg32Δ cells revealed that macromitophagy is required for maintaining cellular lipid homeostasis. We concluded that macromitophagy defines yeast longevity by modulating vital cellular processes inside and outside of mitochondria.


Asunto(s)
Medios de Cultivo/farmacología , Homeostasis/fisiología , Metabolismo de los Lípidos/fisiología , Mitocondrias/fisiología , Saccharomyces cerevisiae/metabolismo , Animales , Regulación Fúngica de la Expresión Génica/fisiología , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...