Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Eur J Pharmacol ; 960: 176112, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37879426

RESUMEN

Kaempferol is a natural flavonoid compound that exhibits various pharmacological actions. However, there are few reports regarding the role of kaempferol in cardiovascular abnormalities. This study aimed to assess whether kaempferol could prevent cardiovascular malfunction and hypertrophy provoked by chronic inhibition of nitric oxide (NO) formation in rats. Rats (180-200 g) were treated daily with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) (40 mg/kg, in drinking water) for five weeks concomitant with kaempferol (oral administration) at a dose of 20 mg/kg or 40 mg/kg or lisinopril (5 mg/kg). Kaempferol partially prevented the progression of hypertension provoked by NO inhibition (p < 0.05). Left ventricular malfunction and hypertrophy present in hypertensive rats were alleviated by concurrent administration of kaempferol (p < 0.05). Furthermore, L-NAME rats had increased sympathetic nerve-mediated vasoconstriction and decreased acetylcholine-induced vasorelaxation and aortic wall thickening, which were resolved by kaempferol treatment (p < 0.05). Kaempferol restored tissue superoxide formation, malondialdehyde, catalase activity, plasma nitric oxide metabolites, tumor necrosis factor-alpha (TNF-α) and interleukin-6 in L-NAME rats (p < 0.05). Overexpression of tumor necrosis factor receptor 2 (TNFR2), phosphatidylinositol 3-kinases (PI3K), AKT serine/threonine kinase 1 (Akt1) and smad2/3 in heart tissue and upregulation of tumor necrosis factor receptor 1 (TNFR1), phosphorylated nuclear factor-kappaB (p-NF-κB) and transforming growth factor beta 1 (TGF-ß1) in vascular tissue were suppressed by kaempferol (p < 0.05). In conclusion, kaempferol exerts antihypertensive, cardioprotective, antioxidant, and anti-inflammatory effects in NO-dependent hypertensive rats. The underlying mechanisms of kaempferol in preventing cardiovascular changes induced by L-NAME were due to the suppression of the TNF-α pathway.


Asunto(s)
Anomalías Cardiovasculares , Hipertensión , Ratas , Animales , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Quempferoles/farmacología , Quempferoles/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Antioxidantes/farmacología , Aorta/metabolismo , Hipertrofia/metabolismo , Anomalías Cardiovasculares/complicaciones , Anomalías Cardiovasculares/metabolismo , Presión Sanguínea
2.
J. physiol. biochem ; 79(3): 555-568, ago. 2023. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-223748

RESUMEN

Fetal undernutrition predisposes to hypertension development. Since nitric oxide (NO) is a key factor in blood pressure control, we aimed to investigate the role of NO alterations in hypertension induced by fetal undernutrition in rats. Male and female offspring from dams exposed to undernutrition during the second half of gestation (MUN) were studied at 21 days (normotensive) and 6 months of age (hypertension developed only in males). In aorta, we analyzed total and phosphorylated endothelial NO synthase (eNOS, p-eNOS), 3-nitrotyrosine (3-NT), and Nrf2 (Western blot). In plasma we assessed L-arginine, asymmetric and symmetric dimethylarginine (ADMA, SDMA; LC–MS/MS), nitrates (NOx, Griess reaction), carbonyl groups, and lipid peroxidation (spectrophotometry). In iliac arteries, we studied superoxide anion production (DHE staining, confocal microscopy) and vasodilatation to acetylcholine (isometric tension). Twenty-one-day-old MUN offspring did not show alterations in vascular e-NOS or 3NT expression, plasma L-Arg/ADMA ratio, or NOx. Compared to control group, 6-month-old MUN rats showed increased aortic expression of p-eNOS/eNOS and 3-NT, being Nrf2 expression lower, elevated plasma L-arginine/ADMA, NOx and carbonyl levels, increased iliac artery DHE staining and reduced acetylcholine-mediated relaxations. These alterations in MUN rats were sex-dependent, affecting males. However, females showed some signs of endothelial dysfunction. We conclude that increased NO production in the context of a pro-oxidative environment, leads to vascular nitrosative damage and dysfunction, which can participate in hypertension development in MUN males. Females show a better adaptation, but signs of endothelial dysfunction, which can explain hypertension in ageing. (AU)


Asunto(s)
Animales , Ratas , Hipertensión/etiología , Desnutrición/complicaciones , Acetilcolina , Arginina , Cromatografía Liquida , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Estrés Nitrosativo , Espectrometría de Masas en Tándem
3.
Heliyon ; 9(5): e16500, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251824

RESUMEN

Vascular alterations induced by a high-fat diet (HFD) are involved in the development of hypertension. Galangin, a flavonoid, is the major active compound isolated from galangal and propolis. The objective of this study was to investigate the effect of galangin on aortic endothelial dysfunction and hypertrophy, and the mechanisms involved in HFD-induced metabolic syndrome (MS) in rats. Male Sprague-Dawley rats (220-240 g) were separated into three groups: control + vehicle, MS + vehicle, and MS + galangin (50 mg/kg). Rats with MS received HFD plus 15% fructose solution for 16 weeks. Galangin or vehicle was orally administered daily for the final four weeks. Galangin reduced body weight and mean arterial pressure in HFD rats (p < 0.05). It also reduced circulating fasting blood glucose, insulin, and total cholesterol levels (p < 0.05). Impaired vascular responses to the exogenous acetylcholine observed in the aortic ring of HFD rats were restored by galangin (p < 0.05). However, the response to sodium nitroprusside did not differ between the groups. Galangin enhanced the expression of the aortic endothelial nitric oxide synthase (eNOS) protein and increased circulating nitric oxide (NO) levels in the MS group (p < 0.05). Aortic hypertrophy in HFD rats was alleviated by galangin (p < 0.05). Increases in tumour necrosis factor-alpha (TNF-α), interleukin (IL)-6 levels, angiotensin-converting enzyme activity and angiotensin II (Ang II) concentrations in rats with MS were suppressed in galangin treated group (p < 0.05). Furthermore, galangin reduced the upregulation of angiotensin II type I receptor (AT1R) and transforming growth factor-beta (TGF-ß) expression in rats with MS (p < 0.05). In conclusion, galangin alleviates metabolic disorders and improves aortic endothelial dysfunction and hypertrophy in the MS group. These effects were consistent with increased NO availability, reduced inflammation, and suppressing Ang II/AT1R/TGF-ß signalling pathway.

4.
Biomed Pharmacother ; 161: 114448, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36857910

RESUMEN

Limonin is a natural triterpenoid isolated from citrus fruit. In the present study, we examined the effects of limonin on cardiometabolic alterations in diet-induced metabolic syndrome. Metabolic syndrome was induced in rats by feeding them a high-fat (HF) diet plus 15% fructose in drinking water for 16 weeks. They were treated with limonin (50 or 100 mg/kg) (n = 8/group) for the final 4 weeks. Increases in body weight (BW), fasting blood glucose (FBG), serum insulin, total cholesterol (TC), blood pressure (BP), liver fat accumulation, and adipocyte hypertrophy, as well as oral glucose tolerance in rats with metabolic syndrome were alleviated by limonin treatment (p < 0.05). Limonin improved ejection fraction and left ventricular (LV) hypertrophy, and reduced angiotensin converting enzyme (ACE) activity and angiotensin II (Ang II) concentration in rats with metabolic syndrome (p < 0.05). It also reduced plasma tumour necrosis factor (TNF)-α, interleukin (IL)- 6, leptin, malonaldehyde (MDA), and superoxide generation, and increased catalase activity in rats with metabolic syndrome compared to controls (p < 0.05). Downregulation of insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (GLUT4) protein expression in epididymal fat pads and cardiac, liver, and gastrocnemius tissues was present in metabolic syndrome, and these were restored by limonin treatment (p < 0.05). In conclusion, limonin shows a potential effect in alleviating symptoms and improving cardiometabolic disorders. These beneficial effects are linked to the reduction of the renin-angiotensin system, inflammation, oxidative stress, and improvement of IRS-1/GLUT4 protein expression in the target tissue.


Asunto(s)
Enfermedades Cardiovasculares , Limoninas , Síndrome Metabólico , Animales , Ratas , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Transportador de Glucosa de Tipo 4 , Hipertrofia , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Limoninas/farmacología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo
5.
J Physiol Biochem ; 79(3): 555-568, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36821073

RESUMEN

Fetal undernutrition predisposes to hypertension development. Since nitric oxide (NO) is a key factor in blood pressure control, we aimed to investigate the role of NO alterations in hypertension induced by fetal undernutrition in rats. Male and female offspring from dams exposed to undernutrition during the second half of gestation (MUN) were studied at 21 days (normotensive) and 6 months of age (hypertension developed only in males). In aorta, we analyzed total and phosphorylated endothelial NO synthase (eNOS, p-eNOS), 3-nitrotyrosine (3-NT), and Nrf2 (Western blot). In plasma we assessed L-arginine, asymmetric and symmetric dimethylarginine (ADMA, SDMA; LC-MS/MS), nitrates (NOx, Griess reaction), carbonyl groups, and lipid peroxidation (spectrophotometry). In iliac arteries, we studied superoxide anion production (DHE staining, confocal microscopy) and vasodilatation to acetylcholine (isometric tension). Twenty-one-day-old MUN offspring did not show alterations in vascular e-NOS or 3NT expression, plasma L-Arg/ADMA ratio, or NOx. Compared to control group, 6-month-old MUN rats showed increased aortic expression of p-eNOS/eNOS and 3-NT, being Nrf2 expression lower, elevated plasma L-arginine/ADMA, NOx and carbonyl levels, increased iliac artery DHE staining and reduced acetylcholine-mediated relaxations. These alterations in MUN rats were sex-dependent, affecting males. However, females showed some signs of endothelial dysfunction. We conclude that increased NO production in the context of a pro-oxidative environment, leads to vascular nitrosative damage and dysfunction, which can participate in hypertension development in MUN males. Females show a better adaptation, but signs of endothelial dysfunction, which can explain hypertension in ageing.


Asunto(s)
Hipertensión , Desnutrición , Ratas , Animales , Masculino , Femenino , Estrés Nitrosativo , Acetilcolina , Cromatografía Liquida , Factor 2 Relacionado con NF-E2/metabolismo , Espectrometría de Masas en Tándem , Hipertensión/etiología , Arginina , Desnutrición/complicaciones , Óxido Nítrico/metabolismo
6.
Sci Rep ; 12(1): 9289, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35662276

RESUMEN

This study investigated the effects of nobiletin on cardiorenal changes and the underlying mechanisms involved in two-kidney, one-clip (2K-1C) hypertension. 2K-1C rats were treated with nobiletin (15 or 30 mg/kg/day) or losartan (10 mg/kg/day) for 4 weeks (n = 8/group). Nobiletin (30 mg/kg) reduced high levels of blood pressure and circulating angiotensin II and angiotensin-converting enzyme activity in 2K-1C rats. Left ventricular (LV) dysfunction and remodelling in 2K-1C rats were alleviated in the nobiletin-treated group (P < 0.05). Nobiletin reduced the upregulation of Ang II type I receptor (AT1R)/JAK (Janus kinase)/STAT (signal transducer and activator of transcription) protein expression in cardiac tissue of 2K-1C rats (P < 0.05). The reduction in kidney function, and accumulation of renal fibrosis in 2K-1C rats were alleviated by nobiletin (P < 0.05). Overexpression of AT1R and NADPH oxidase 4 (Nox4) protein in nonclipped kidney tissue was suppressed in the nobiletin-treated group (P < 0.05). The elevations in oxidative stress parameters and the reductions in antioxidant enzymes were attenuated in 2K-1C rats treated with nobiletin (P < 0.05). In summary, nobiletin had renin-angiotensin system inhibitory and antioxidant effects and attenuated LV dysfunction and remodelling via restoration of the AT1R/JAK/STAT pathway. Nobiletin also resolved renal damage that was related to modulation of the AT1R/Nox4 cascade in 2K-1C hypertension.


Asunto(s)
Hipertensión Renovascular , Hipertensión , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Presión Sanguínea/fisiología , Flavonas , Hipertensión Renovascular/metabolismo , Quinasas Janus/metabolismo , Riñón/metabolismo , Ratas , Factores de Transcripción STAT/metabolismo , Transducción de Señal
7.
Biomed Pharmacother ; 146: 112601, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35062067

RESUMEN

Genistein is a bioflavonoid mainly found in soybean. This study evaluated the effect of genistein on vascular dysfunction and kidney damage in two-kidney, one-clipped (2K1C) hypertensive rats. Male Sprague-Dawley-2K1C hypertensive rats were treated with genistein (40 or 80 mg/kg) or losartan 10 mg/kg (n = 8/group). Genistein reduced blood pressure, attenuated the increase in sympathetic nerve-mediated contractile response and endothelial dysfunction in the mesenteric vascular beds and aorta of 2K1C rats. Increases in the intensity of tyrosine hydroxylase (TH) in the mesentery and plasma norepinephrine (NE) were alleviated in the genistein-treated group. Genistein also improved renal dysfunction, hypertrophy of the non-clipped kidney (NCK) and atrophy of the clipped kidney (CK) in 2K1C rats. Upregulation of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 4 (Nox4) and Bcl2-associated X protein (BAX) and downregulation of B-cell lymphoma 2 (Bcl2) protein found in CK were restored by genistein. It also suppressed the overexpression of AT1R, transforming growth factor beta I (TGF-ß1), smad2/3 and p-smad3 in NCK. Genistein reduced serum angiotensin converting enzyme (ACE) activity and plasma angiotensin II (Ang II) in 2K1C rats. Low levels of catalase activity as well as high levels of superoxide generation and malondialdehyde (MDA) in 2K1C rats were restored by genistein treatment. In conclusion, genistein suppressed renin-angiotensin system-mediated sympathetic activation and oxidative stress in 2K1C rats. It alleviated renal atrophy in CK via modulation of AT1R/NADPH oxidase/Bcl-2/BAX pathways and hypertrophy in NCK via AT1R/TGF-ß1/smad-dependent signalling pathways.


Asunto(s)
Genisteína/farmacología , Hipertensión Renovascular/metabolismo , Riñón/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Riñón/patología , Masculino , Ratas , Ratas Sprague-Dawley
8.
Antioxidants (Basel) ; 10(4)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801631

RESUMEN

In this study, we examine whether Clitoria ternatea Linn. (CT) can prevent Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced cardiac and vascular dysfunction in rats. Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) and orally administered with CT extract (300 mg/kg/day) or lisinopril (2.5 mg/kg/day) for 5 weeks. The main phytochemical components of the CT extract were found to be flavonoids. The CT extract alleviated the high blood pressure in rats receiving L-NAME. Decreased vasorelaxation responses to acetylcholine and enhanced contractile responses to sympathetic nerve stimulation in aortic rings and mesenteric vascular beds of L-NAME treated rats were ameliorated by CT extract supplementation. Left ventricular hypertrophy and dysfunction were developed in L-NAME rats, which were partially prevented by CT extract treatment. The CT extract alleviated upregulated endothelial nitric oxide synthase expression, decreased plasma nitrate/nitrite levels, and increased oxidative stress in L-NAME rats. It suppressed high levels of serum angiotensin-converting enzyme activity, plasma angiotensin II, and cardiac angiotensin II type 1 receptor, NADPH oxidases 2, nuclear factor-kappa B, and tumor necrosis factor-alpha expression. The CT extract, therefore, partially prevented L-NAME-induced hypertension and cardiovascular alterations in rats. These effects might be related to a reduction in the oxidative stress and renin-angiotensin system activation due to L-NAME in rats.

9.
Eur J Pharmacol ; 899: 174010, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33711309

RESUMEN

In the present study, the therapeutic effects of imperatorin on metabolic and vascular alterations and possible underlying mechanisms were investigated in high-fat/high-fructose diet (HFFD)-fed rats. Male Sprague-Dawley rats were fed a high-fat diet plus 15% fructose in drinking water for 16 weeks. HFFD-fed rats were treated with imperatorin (15 or 30 mg/kg/day) for the last 4 weeks. In HFFD-fed rats, imperatorin significantly reduced obesity, hypertension, dyslipidemia, and insulin resistance. Imperatorin markedly improved vascular endothelial function and alleviated changes in vascular morphology. Furthermore, imperatorin treatment significantly increased the plasma levels of the nitric oxide metabolite and adiponectin, and upregulated adiponectin receptor 1 and endothelial nitric oxide synthase (eNOS) protein expression in the thoracic aorta. Imperatorin treatment decreased vascular superoxide anion production and downregulated aortic NADPH oxidase subunit p47phox protein expression. These findings indicated that imperatorin alleviates HFFD-induced metabolic and vascular alterations in rats. The possible underlying mechanism may involve the restoration of adiponectin receptor 1 and eNOS expression and suppression of p47phox expression.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Furocumarinas/farmacología , Hemodinámica/efectos de los fármacos , Hipertensión/prevención & control , Síndrome Metabólico/prevención & control , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptores de Adiponectina/metabolismo , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Dieta Alta en Grasa , Azúcares de la Dieta , Modelos Animales de Enfermedad , Dislipidemias/enzimología , Dislipidemias/etiología , Dislipidemias/fisiopatología , Dislipidemias/prevención & control , Fructosa , Hipertensión/enzimología , Hipertensión/etiología , Hipertensión/fisiopatología , Resistencia a la Insulina , Masculino , Síndrome Metabólico/enzimología , Síndrome Metabólico/etiología , Síndrome Metabólico/fisiopatología , Óxido Nítrico/metabolismo , Obesidad/enzimología , Obesidad/etiología , Obesidad/fisiopatología , Obesidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal
10.
Antioxidants (Basel) ; 10(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557258

RESUMEN

Genistein is an isoflavone found in soybeans. This study evaluates the protective effects of genistein on Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension, cardiac remodeling, and dysfunction in rats. Male Wistar rats were treated with L-NAME 40 mg/kg/day together for 5 weeks, with or without genistein at a dose of 40 or 80 mg/kg/day or lisinopril 5 mg/kg/day (n = 8 per group). Genistein prevented L-NAME-induced hypertension in rats. Increases in the left ventricular weight, metalloproteinase-2, metalloproteinase-9, and collagen type I intensity were observed in L-NAME rats, and these changes were attenuated in the genistein-treated group. Genistein reduced circulating angiotensin-converting enzyme activity and angiotensin II concentrations in L-NAME rats. L-NAME increased plasma and cardiac malondialdehyde and vascular superoxide generations, as well as reductions of serum and cardiac catalase activities in rats. Plasma nitrate/nitrite were protected in the genistein-treated group. Genistein prevented the L-NAME-induced overexpression of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 2 (gp91phox), and transforming growth factor beta I (TGF-ß1) in hypertensive rats. In conclusion, genistein exhibited a cardioprotective effect in hypertensive rats in this study. The molecular mechanisms might be mediated by suppression of oxidative stress through the Ang II/AT1R/NADPH oxidase/TGF-ß1 signaling pathway.

11.
Andrologia ; 53(2): e13917, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33244785

RESUMEN

The effects of a Cratoxylum formosum (Jack) Dyer ssp. (CF) extract on testicular damage were assessed in hypertensive rats. Nω -nitro-L-arginine methyl ester hydrochloride (L-NAME; 40 mg kg-1  day-1 ) was administered for 5 weeks to induce hypertension in male Sprague-Dawley rats, and treated with CF extract (100, 300 or 500 mg kg-1  day-1 ) or sildenafil (5 mg kg-1  day-1 ) during the final 2 weeks (n = 8/group). Biochemical components of the CF extract were identified and mainly contained phenolic compounds. The CF extract significantly reduced systolic blood pressure and alleviated impaired sperm quality and seminiferous tubular morphology in hypertensive rats. CF extract restored reduced serum testosterone and protein expression of steroidogenic acute regulatory protein (StAR), nuclear factor erythroid-related factor 2 (Nrf2), and haem oxygenase 1 (HO-1) in L-NAME rats. Hypertensive rats presented decreased antioxidant enzyme activities, and increased testicular and plasma malondialdehyde (MDA) levels and superoxide production, all of which were normalised by CF extract. Furthermore, endothelial nitric oxide synthase (eNOS) expression in testicular tissue and plasma nitrate/nitrite levels were restored in hypertensive rats administered CF extract. Conclusion: CF extract alleviated testicular damage in hypertensive rats. Potential molecular mechanisms may involve suppression of oxidative stress and restoration of StAR, Nrf2, HO-1 and eNOS expression in hypertensive rats.


Asunto(s)
Clusiaceae , Hipertensión , Animales , Presión Sanguínea , Clusiaceae/metabolismo , Hipertensión/tratamiento farmacológico , Masculino , NG-Nitroarginina Metil Éster , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA