Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 15: 1328333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274984

RESUMEN

The prevalence of Alzheimer's disease (AD) and related dementias (ADRD) is increasing. African Americans are twice as likely to develop dementia than other ethnic populations. Traditional cognitive screening solutions lack the sensitivity to independently identify individuals at risk for cognitive decline. The DCTclock is a 3-min AI-enabled adaptation of the well-established clock drawing test. The DCTclock can estimate dementia risk for both general cognitive impairment and the presence of AD pathology. Here we performed a retrospective analysis to assess the performance of the DCTclock to estimate future conversion to ADRD in African American participants from the Rush Alzheimer's Disease Research Center Minority Aging Research Study (MARS) and African American Clinical Core (AACORE). We assessed baseline DCTclock scores in 646 participants (baseline median age = 78.0 ± 6.4, median years of education = 14.0 ± 3.2, 78% female) and found significantly lower baseline DCTclock scores in those who received a dementia diagnosis within 3 years. We also found that 16.4% of participants with a baseline DCTclock score less than 60 were significantly more likely to develop dementia in 5 years vs. those with the highest DCTclock scores (75-100). This research demonstrates the DCTclock's ability to estimate the 5-year risk of developing dementia in an African American population. Early detection of elevated dementia risk using the DCTclock could provide patients, caregivers, and clinicians opportunities to plan and intervene early to improve cognitive health trajectories. Early detection of dementia risk can also enhance participant selection in clinical trials while reducing screening costs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-29094198

RESUMEN

The three-layered visual cortex of turtle is characterized by extensive intracortical axonal projections and receives non-retinotopic axonal projections from lateral geniculate nucleus. What spatiotemporal transformation of visual stimuli into cortical activity arises from such tangle of malleable cortical inputs and intracortical connections? To address this question, we obtained band-pass filtered extracellular recordings of neural activity in turtle dorsal cortex during visual stimulation of the retina. We discovered important spatial and temporal features of stimulus-modulated cortical local field potential (LFP) recordings. Spatial receptive fields span large areas of the visual field, have an intricate internal structure, and lack directional tuning. The receptive field structure varies across recording sites in a distant-dependent manner. Such composite spatial organization of stimulus-modulated cortical activity is accompanied by an equally multifaceted temporal organization. Cortical visual responses are delayed, persistent, and oscillatory. Further, prior cortical activity contributes globally to adaptation in turtle visual cortex. In conclusion, these results demonstrate convoluted spatiotemporal transformations of visual stimuli into stimulus-modulated cortical activity that, at present, largely evade computational frameworks.


Asunto(s)
Tortugas/fisiología , Visión Ocular/fisiología , Corteza Visual/fisiología , Adaptación Fisiológica/fisiología , Animales , Microelectrodos , Estimulación Luminosa , Retina/fisiología , Análisis Espacio-Temporal , Vías Visuales/fisiología , Análisis de Ondículas
3.
J Neurophysiol ; 118(5): 2579-2591, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794194

RESUMEN

Bursts of oscillatory neural activity have been hypothesized to be a core mechanism by which remote brain regions can communicate. Such a hypothesis raises the question to what extent oscillations are coherent across spatially distant neural populations. To address this question, we obtained local field potential (LFP) and membrane potential recordings from the visual cortex of turtle in response to visual stimulation of the retina. The time-frequency analysis of these recordings revealed pronounced bursts of oscillatory neural activity and a large trial-to-trial variability in the spectral and temporal properties of the observed oscillations. First, local bursts of oscillations varied from trial to trial in both burst duration and peak frequency. Second, oscillations of a given recording site were not autocoherent; i.e., the phase did not progress linearly in time. Third, LFP oscillations at spatially separate locations within the visual cortex were more phase coherent in the presence of visual stimulation than during ongoing activity. In contrast, the membrane potential oscillations from pairs of simultaneously recorded pyramidal neurons showed smaller phase coherence, which did not change when switching from black screen to visual stimulation. In conclusion, neuronal oscillations at distant locations in visual cortex are coherent at the mesoscale of population activity, but coherence is largely absent at the microscale of the membrane potential of neurons.NEW & NOTEWORTHY Coherent oscillatory neural activity has long been hypothesized as a potential mechanism for communication across locations in the brain. In this study we confirm the existence of coherent oscillations at the mesoscale of integrated cortical population activity. However, at the microscopic level of neurons, we find no evidence for coherence among oscillatory membrane potential fluctuations. These results raise questions about the applicability of the communication through coherence hypothesis to the level of the membrane potential.


Asunto(s)
Potenciales Evocados Visuales , Potenciales de la Membrana , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Tortugas , Corteza Visual/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...