Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 8(1): 94, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767205

RESUMEN

The Coronavirus disease 2019 (COVID-19) global pandemic has transformed almost every facet of human society throughout the world. Against an emerging, highly transmissible disease, governments worldwide have implemented non-pharmaceutical interventions (NPIs) to slow the spread of the virus. Examples of such interventions include community actions, such as school closures or restrictions on mass gatherings, individual actions including mask wearing and self-quarantine, and environmental actions such as cleaning public facilities. We present the Worldwide Non-pharmaceutical Interventions Tracker for COVID-19 (WNTRAC), a comprehensive dataset consisting of over 6,000 NPIs implemented worldwide since the start of the pandemic. WNTRAC covers NPIs implemented across 261 countries and territories, and classifies NPIs into a taxonomy of 16 NPI types. NPIs are automatically extracted daily from Wikipedia articles using natural language processing techniques and then manually validated to ensure accuracy and veracity. We hope that the dataset will prove valuable for policymakers, public health leaders, and researchers in modeling and analysis efforts to control the spread of COVID-19.


Asunto(s)
Inteligencia Artificial , COVID-19/prevención & control , COVID-19/terapia , Control de Enfermedades Transmisibles/tendencias , Salud Global , Humanos
2.
AMIA Annu Symp Proc ; 2021: 763-772, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35308927

RESUMEN

Overabundance of information within electronic health records (EHRs) has resulted in a need for automated systems to mitigate the cognitive burden on physicians utilizing today's EHR systems. We present ProSPER, a Problem-oriented Summary of the Patient Electronic Record that displays a patient summary centered around an auto-generated problem list and disease-specific views for chronic conditions. ProSPER was developed using 1,500 longitudinal patient records from two large multi-specialty medical groups in the United States, and leverages multiple natural language processing (NLP) components targeting various fundamental (e.g. syntactic analysis), clinical (e.g. adverse drug event extraction) and summarizing (e.g. problem list generation) tasks. We report evaluation results for each component and discuss how specific components address existing physician challenges in reviewing EHR data. This work demonstrates the need to leverage holistic information in EHRs to build a comprehensive summarization application, and the potential for NLP-based applications to support physicians and improve clinical care.


Asunto(s)
Médicos , Cognición , Registros Electrónicos de Salud , Electrónica , Humanos , Procesamiento de Lenguaje Natural , Médicos/psicología , Estados Unidos
3.
JMIR Med Inform ; 8(11): e22508, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245284

RESUMEN

BACKGROUND: Although electronic health records (EHRs) have been widely adopted in health care, effective use of EHR data is often limited because of redundant information in clinical notes introduced by the use of templates and copy-paste during note generation. Thus, it is imperative to develop solutions that can condense information while retaining its value. A step in this direction is measuring the semantic similarity between clinical text snippets. To address this problem, we participated in the 2019 National NLP Clinical Challenges (n2c2)/Open Health Natural Language Processing Consortium (OHNLP) clinical semantic textual similarity (ClinicalSTS) shared task. OBJECTIVE: This study aims to improve the performance and robustness of semantic textual similarity in the clinical domain by leveraging manually labeled data from related tasks and contextualized embeddings from pretrained transformer-based language models. METHODS: The ClinicalSTS data set consists of 1642 pairs of deidentified clinical text snippets annotated in a continuous scale of 0-5, indicating degrees of semantic similarity. We developed an iterative intermediate training approach using multi-task learning (IIT-MTL), a multi-task training approach that employs iterative data set selection. We applied this process to bidirectional encoder representations from transformers on clinical text mining (ClinicalBERT), a pretrained domain-specific transformer-based language model, and fine-tuned the resulting model on the target ClinicalSTS task. We incrementally ensembled the output from applying IIT-MTL on ClinicalBERT with the output of other language models (bidirectional encoder representations from transformers for biomedical text mining [BioBERT], multi-task deep neural networks [MT-DNN], and robustly optimized BERT approach [RoBERTa]) and handcrafted features using regression-based learning algorithms. On the basis of these experiments, we adopted the top-performing configurations as our official submissions. RESULTS: Our system ranked first out of 87 submitted systems in the 2019 n2c2/OHNLP ClinicalSTS challenge, achieving state-of-the-art results with a Pearson correlation coefficient of 0.9010. This winning system was an ensembled model leveraging the output of IIT-MTL on ClinicalBERT with BioBERT, MT-DNN, and handcrafted medication features. CONCLUSIONS: This study demonstrates that IIT-MTL is an effective way to leverage annotated data from related tasks to improve performance on a target task with a limited data set. This contribution opens new avenues of exploration for optimized data set selection to generate more robust and universal contextual representations of text in the clinical domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...