Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 13: 6637-6646, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425479

RESUMEN

PURPOSE: To develop a general method for NP fabrication from various proteins with maintenance of biological activity. METHODS: A novel general approach for producing protein nanoparticles (NP) by nanoprecipitation of the protein solutions in 1,1,1,3,3,3-hexafluoroisopropanol is described. Protein NP sizes and shapes were analyzed by dynamic light scattering, scanning electron and atomic force microscopy (SEM and AFM). Chemical composition of the NP was confirmed using ultraviolet (UV) spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and circular dichroism (CD). Biological properties of the NP were analyzed in ELISA, immunofluorescent analysis and lysozyme activity assay. RESULTS: Water-insoluble NP were constructed from globular (bovine serum albumin (BSA), lysozyme, immunoglobulins), fibrillar (fibrinogen) proteins and linear polylysines by means of nanoprecipitation of protein solutions in fluoroalcohols. AFM and SEM revealed NP sizes of 20-250 nm. The NP chemical structure was confirmed by UV spectroscopy, protease digestion and EDX spectroscopy. CD spectra revealed a stable secondary structure of proteins in NP. The UV spectra, microscopy and SDS-PAA gel electrophoresis (PAGE) proved the NP stability at +4°C for 7 months. Co-precipitation of proteins with fluorophores or nanoprecipitation of pre-labeled BSA resulted in fluorescent NP that retained antigenic structures as shown by their binding with specific antibodies. Moreover, NP from monoclonal antibodies could bind with the hepatitis B virus antigen S. Besides that, lysozyme NP could digest bacterial cellular walls. CONCLUSION: Thus, the water-insoluble, stable protein NP were produced by nanoprecipitation without cross-linking and retained ligand-binding and enzymatic activities.


Asunto(s)
Muramidasa/metabolismo , Nanopartículas/química , Albúmina Sérica Bovina/química , Animales , Anticuerpos/metabolismo , Bovinos , Dicroismo Circular , Fluorescencia , Ligandos , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Péptidos/química , Estructura Secundaria de Proteína , Espectrometría por Rayos X
2.
Nucleic Acids Res ; 46(17): 8978-8992, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30107602

RESUMEN

We examined the assembly of DNA G-quadruplexes (G4s) into higher-order structures using atomic force microscopy, optical and electrophoretic methods, NMR spectroscopy and molecular modeling. Our results suggest that parallel blunt-ended G4s with single-nucleotide or modified loops may form different types of multimers, ranging from stacks of intramolecular structures and/or interlocked dimers and trimers to wires. Decreasing the annealing rate and increasing salt or oligonucleotide concentrations shifted the equilibrium from intramolecular G4s to higher-order structures. Control antiparallel and hybrid G4s demonstrated no polymorphism or aggregation in our experiments. The modification that mimics abasic sites (1',2'-dideoxyribose residues) in loops enhanced the oligomerization/multimerization of both the 2-tetrad and 3-tetrad G4 motifs. Our results shed light on the rules that govern G4 rearrangements. Gaining control over G4 folding enables the harnessing of the full potential of such structures for guided assembly of supramolecular DNA structures for nanotechnology.


Asunto(s)
Desoxirribosa/análogos & derivados , G-Cuádruplex , Pliegue del ARN , Emparejamiento Base , Desoxirribosa/química , Modelos Moleculares , Motivos de Nucleótidos , Mutación Puntual , Cloruro de Potasio
3.
Nucleic Acids Res ; 46(6): 2751-2764, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29474573

RESUMEN

Non-canonical DNA structures are widely used for regulation of gene expression, in DNA nanotechnology and for the development of new DNA-based sensors. I-motifs (iMs) are two intercalated parallel duplexes that are held together by hemiprotonated C-C base pairs. Previously, iMs were used as an accurate sensor for intracellular pH measurements. However, iM stability is moderate, which in turn limits its in vivo applications. Here, we report the rational design of a new substituted phenoxazine 2'-deoxynucleotide (i-clamp) for iM stabilization. This residue contains a C8-aminopropyl tether that interacts with the phosphate group within the neighboring chain without compromising base pairing. We studied the influence of i-clamp on pH-dependent stability for intra- and intermolecular iM structures and found the optimal positions for modification. Two i-clamps on opposite strands provide thermal stabilization up to 10-11°C at a pH of 5.8. Thus, we developed a new modification that shows significant iM-stabilizing effect both at strongly and mildly acidic pH and increases iM transition pH values. i-Clamp can be used for tuning iM-based pH probes or assembling extra stable iM structures for various applications.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Oxazinas/química , Emparejamiento Base , ADN/síntesis química , Concentración de Iones de Hidrógeno , Sustancias Intercalantes/química , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Compuestos Organofosforados/química , Termodinámica
5.
Artículo en Inglés | MEDLINE | ID: mdl-28144586

RESUMEN

The only recognized virulence factor of enterotoxigenic Bacteroides fragilis (ETBF) that accompanies bloodstream infections is the zinc-dependent non-lethal metalloprotease B. fragilis toxin (BFT). The isolated toxin stimulates intestinal secretion, resulting in epithelial damage and necrosis. Numerous publications have focused on the interrelation of BFT with intestinal inflammation and colorectal neoplasia, but nothing is known about the mechanism of its secretion and delivery to host cells. However, recent studies of gram-negative bacteria have shown that outer membrane vesicles (OMVs) could be an essential mechanism for the spread of a large number of virulence factors. Here, we show for the first time that BFT is not a freely secreted protease but is associated with OMVs. Our findings indicate that only outer surface-exposed BFT causes epithelial cell contact disruption. According to our in silico models confirmed by Trp quenching assay and NMR, BFT has special interactions with outer membrane components such as phospholipids and is secreted during vesicle formation. Moreover, the strong cooperation of BFT with polysaccharides is similar to the behavior of lectins. Understanding the molecular mechanisms of BFT secretion provides new perspectives for investigating intestinal inflammation pathogenesis and its prevention.


Asunto(s)
Bacteroides fragilis/metabolismo , Metaloendopeptidasas/metabolismo , Vesículas Secretoras/metabolismo , Toxinas Bacterianas , Bacteroides fragilis/citología , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...