Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742950

RESUMEN

An important component of tissues is the extracellular matrix (ECM), which not only forms a tissue scaffold, but also provides the environment for numerous biochemical reactions. Its composition is strictly regulated, and any irregularities can result in the development of many diseases, including cancer. Sarcoid is the most common skin cancer in equids. Its formation results from the presence of the genetic material of the bovine papillomavirus (BPV). In addition, it is assumed that sarcoid-dependent oncogenic transformation arises from a disturbed wound healing process, which may be due to the incorrect functioning of the ECM. Moreover, sarcoid is characterized by a failure to metastasize. Therefore, in this study we decided to investigate the differences in the expression profiles of genes related not only to ECM remodeling, but also to the cell adhesion pathway, in order to estimate the influence of disturbances within the ECM on the sarcoid formation process. Furthermore, we conducted comparative research not only between equine sarcoid tissue bioptates and healthy skin-derived explants, but also between dermal fibroblast cell lines transfected and non-transfected with a construct encoding the E4 protein of the BP virus, in order to determine its effect on ECM disorders. The obtained results strongly support the hypothesis that ECM-related genes are correlated with sarcoid formation. The deregulated expression of selected genes was shown in both equine sarcoid tissue bioptates and adult cutaneous fibroblast cell (ACFC) lines neoplastically transformed by nucleofection with gene constructs encoding BPV1-E1^E4 protein. The identified genes (CD99, ITGB1, JAM3 and CADM1) were up- or down-regulated, which pinpointed the phenotypic differences from the backgrounds noticed for adequate expression profiles in other cancerous or noncancerous tumors as reported in the available literature data. Unravelling the molecular pathways of ECM remodeling and cell adhesion in the in vivo and ex vivo models of epidermal/dermal sarcoid-related cancerogenesis might provide powerful tools for further investigations of genetic and epigenetic biomarkers for both silencing and re-initiating the processes of sarcoid-dependent neoplasia. Recognizing those biomarkers might insightfully explain the relatively high capacity of sarcoid-descended cancerous cell derivatives to epigenomically reprogram their nonmalignant neoplastic status in domestic horse cloned embryos produced by somatic cell nuclear transfer (SCNT).


Asunto(s)
Papillomavirus Bovino 1 , Enfermedades de los Caballos , Infecciones por Papillomavirus , Sarcoidosis , Enfermedades de la Piel , Neoplasias Cutáneas , Animales , Papillomavirus Bovino 1/genética , Transformación Celular Neoplásica , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Enfermedades de los Caballos/metabolismo , Caballos/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/veterinaria
2.
Cells ; 11(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455948

RESUMEN

Matrix metalloproteinases (MMPs) represent a family of enzymes capable of biocatalytically breaking down the structural and functional proteins responsible for extracellular matrix (ECM) integrity. This capability is widely used in physiological processes; however, imbalanced MMP activity can trigger the onset and progression of various pathological changes, including the neoplasmic transformation of different cell types. We sought to uncover molecular mechanisms underlying alterations in transcriptional profiles of genes coding for MMPs, which were comprehensively identified in equine adult dermal tissue bioptates, sarcoid-derived explants, and ex vivo expanded adult cutaneous fibroblast cell (ACFC) lines subjected to inducible oncogenic transformation into sarcoid-like cells. The results strongly support the hypothesis that the transcriptional activity of MMP genes correlates with molecular modifications arising in equine dermal cells during their conversion into sarcoid cells. The alterations in MMP transcription signatures occurs in both sarcoid tissues and experimentally transformed equine ACFC lines expressing BPV1-E4^E1 transgene, which were characterized by gene up- and down-regulation patterns.


Asunto(s)
Enfermedades de los Caballos , Sarcoidosis , Enfermedades de la Piel , Neoplasias Cutáneas , Animales , Transformación Celular Neoplásica , Enfermedades de los Caballos/genética , Enfermedades de los Caballos/metabolismo , Enfermedades de los Caballos/patología , Caballos , Metaloproteinasas de la Matriz/genética , Piel/patología , Neoplasias Cutáneas/patología
3.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35216085

RESUMEN

The equine sarcoid is one of the most common neoplasias in the Equidae family. Despite the association of this tumor with the presence of bovine papillomavirus (BPV), the molecular mechanism of this lesion has not been fully understood. The transgenization of equine adult cutaneous fibroblast cells (ACFCs) was accomplished by nucleofection, followed by detection of molecular modifications using high-throughput NGS transcriptome sequencing. The results of the present study confirm that BPV-E4- and BPV-E1^E4-mediated nucleofection strategy significantly affected the transcriptomic alterations, leading to sarcoid-like neoplastic transformation of equine ACFCs. Furthermore, the results of the current investigation might contribute to the creation of in vitro biomedical models suitable for estimating the fates of molecular dedifferentiability and the epigenomic reprogrammability of BPV-E4 and BPV-E4^E1 transgenic equine ACFC-derived sarcoid-like cell nuclei in equine somatic cell-cloned embryos. Additionally, these in vitro models seem to be reliable for thoroughly recognizing molecular mechanisms that underlie not only oncogenic alterations in transcriptomic signatures, but also the etiopathogenesis of epidermal and dermal sarcoid-dependent neoplastic transformations in horses and other equids. For those reasons, the aforementioned transgenic models might be useful for devising clinical treatments in horses afflicted with sarcoid-related neoplasia of cutaneous and subcutaneous tissues.


Asunto(s)
Fibroblastos/virología , Enfermedades de los Caballos/virología , Caballos/virología , Neoplasias/virología , Papillomaviridae/genética , Sarcoidosis/virología , Enfermedades de la Piel/virología , Animales , Animales Modificados Genéticamente/virología , Equidae/virología , Infecciones por Papillomavirus/virología , Piel/virología , Transcriptoma/genética
4.
Animals (Basel) ; 10(5)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438542

RESUMEN

Sarcoids are the most common skin neoplasm in the Equidae family. Sarcoids are benign, but may cause severe damage in affected animals. Due to the high risk of post-treatment recurrence and the lack of an effective method of treatment, it is reasonable to perform studies on the molecular aspects of this neoplasm. Therefore, the present studies analyzed five genes (cell cycle control binding protein alpha, coronin 1b, metalloproteinase 2, tissue inhibitor of metalloproteinases 3 and vimentin) related to cell mobility and invasion traits. Primary healthy fibroblasts and sarcoid cells were obtained from skin biopsies. Cell lines were cultured in two different medium types with different concentrations of foetal bovine serum (10% and 0.5% FBS) to study its influence on the analyzed genes. Gene expression was measured using the real-time PCR method. The results showed significant differences in two genes (coronin and vimentin) depending on culture conditions. In conclusion, the results enabled finding two new genes, related to cell motility and invasion traits, in which gene expression is deregulated. Results of the study may put new knowledge into the complexity of the genetic background of this disease and show the importance of further analysis on this subject.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA