Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Genet ; 64(3): 507-514, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37599337

RESUMEN

Coenzyme Q5 (COQ5), a C-methyltransferase, modifies coenzyme Q10 (COQ10) during biosynthesis and interacts with polyA-tail regulating zinc-finger protein ZC3H14 in neural development. Here, we present a fifth patient (a third family) worldwide with neurodevelopmental and physiological symptoms including COQ10 deficiency. Our patient harbors one novel c.681+1G>A and one recurrent p.Gly118Ser variant within COQ5. The patient's mRNA profile reveals multiple COQ5 splice-variants. Subsequently, we comprehensively described patient's clinical features as compared to phenotype and symptoms of other known congenital coenzyme Q5-linked cases. A core spectrum of COQ5-associated symptoms includes reduced COQ10 levels, intellectual disability, encephalopathy, cerebellar ataxia, cerebellar atrophy speech regression/dysarthria, short stature, and developmental delays. Our patient additionally displays dysmorphia, microcephaly, and regressive social faculties. These results formally establish causal association of biallelic COQ5 mutation with pathology, outline a core COQ5-linked phenotype, and identify mRNA mis-splicing as the molecular mechanism underlying all COQ5 variant-linked pathology to date.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética
2.
Cells ; 11(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36078134

RESUMEN

Microcephaly presents in neurodevelopmental disorders with multiple aetiologies, including bi-allelic mutation in TUBGCP2, a component of the biologically fundamental and conserved microtubule-nucleation complex, γ-TuRC. Elucidating underlying principles driving microcephaly requires clear phenotype recapitulation and assay reproducibility, areas where go-to experimental models fall short. We present an alternative simple vertebrate/invertebrate dual system to investigate fundamental TUBGCP2-related processes driving human microcephaly and associated developmental traits. We show that antisense morpholino knockdown (KD) of the Danio rerio homolog, tubgcp2, recapitulates human TUBGCP2-associated microcephaly. Co-injection of wild type mRNA pre-empts microcephaly in 55% of KD zebrafish larvae, confirming causality. Body shortening observed in morphants is also rescued. Mitotic marker (pH3) staining further reveals aberrantly accumulated dividing brain cells in microcephalic tubgcp2 KD morphants, indicating that tubgcp2 depletion disrupts normal mitosis and/or proliferation in zebrafish neural progenitor brain cells. Drosophila melanogaster double knockouts (KO) for TUBGCP2 homologs Grip84/cg7716 also develop microcephalic brains with general microsomia. Exacerbated Grip84/cg7716-linked developmental aberration versus single mutations strongly suggests interactive or coinciding gene functions. We infer that tubgcp2 and Grip84/cg7716 affect brain size similarly to TUBGCP2 and recapitulate both microcephaly and microcephaly-associated developmental impact, validating the zebrafish/fly research model for human microcephaly. Given the conserved cross-phyla homolog function, the data also strongly support mitotic and/or proliferative disruption linked to aberrant microtubule nucleation in progenitor brain cells as key mechanistic defects for human microcephaly.


Asunto(s)
Microcefalia , Animales , Drosophila , Drosophila melanogaster , Humanos , Microcefalia/genética , Reproducibilidad de los Resultados , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...