Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 56(11): 6033-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22926570

RESUMEN

Tildipirosin is a 16-membered-ring macrolide developed to treat bacterial pathogens, including Mannheimia haemolytica and Pasteurella multocida, that cause respiratory tract infections in cattle and swine. Here we evaluated the efficacy of tildipirosin at inhibiting protein synthesis on the ribosome (50% inhibitory concentration [IC(50)], 0.23 ± 0.01 µM) and compared it with the established veterinary macrolides tylosin, tilmicosin, and tulathromycin. Mutation and methylation at key rRNA nucleotides revealed differences in the interactions of these macrolides within their common ribosomal binding site.


Asunto(s)
Antibacterianos/química , Mannheimia haemolytica/efectos de los fármacos , Pasteurella multocida/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Tilosina/análogos & derivados , Drogas Veterinarias/química , Antibacterianos/farmacología , Sitios de Unión , Disacáridos/química , Disacáridos/farmacología , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Mannheimia haemolytica/química , Mannheimia haemolytica/genética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mutación , Nucleótidos/genética , Pasteurella multocida/química , Pasteurella multocida/genética , ARN Ribosómico/química , ARN Ribosómico/genética , Ribosomas/química , Fracciones Subcelulares/química , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos , Tilosina/química , Tilosina/farmacología , Drogas Veterinarias/farmacología
2.
ACS Chem Biol ; 7(8): 1351-5, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22563863

RESUMEN

The veterinary antibiotic tildipirosin (20,23-dipiperidinyl-mycaminosyl-tylonolide, Zuprevo) was developed recently to treat bovine and swine respiratory tract infections caused by bacterial pathogens such as Pasteurella multocida. Tildipirosin is a derivative of the naturally occurring compound tylosin. Here, we define drug-target interactions by combining chemical footprinting with structure modeling and show that tildipirosin, tylosin, and an earlier tylosin derivative, tilmicosin (20-dimethylpiperidinyl-mycaminosyl-tylonolide, Micotil), bind to the same macrolide site within the large subunit of P. multocida and Escherichia coli ribosomes. The drugs nevertheless differ in how they occupy this site. Interactions of the two piperidine components, which are unique to tildipirosin, distinguish this drug from tylosin and tilmicosin. The 23-piperidine of tildipirosin contacts ribosomal residues on the tunnel wall while its 20-piperidine is oriented into the tunnel lumen and is positioned to interfere with the growing nascent peptide.


Asunto(s)
Macrólidos/química , Ribosomas/química , Tilosina/análogos & derivados , Antibacterianos/química , Sitios de Unión , Escherichia coli/metabolismo , Modelos Químicos , Modelos Moleculares , Pasteurella multocida/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN Ribosómico/metabolismo , Tilosina/química
3.
J Chem Inf Model ; 52(2): 409-19, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-21985436

RESUMEN

The binding affinity of a drug-like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, then the molecule is unlikely to bind to its target. Determination of the global minimum energy conformation and calculation of conformational penalties of binding is a prerequisite for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic compounds generated by conformational analysis with modified electrostatics are good approximations of the conformational distributions predicted by experimental data and with molecular dynamics performed in explicit solvent. Finally the method is used to calculate conformational penalties for zwitterionic GluA2 agonists and to filter false positives from a docking study.


Asunto(s)
Modelos Moleculares , Preparaciones Farmacéuticas/química , Termodinámica , Métodos , Conformación Molecular
4.
Mol Microbiol ; 71(5): 1218-27, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19154331

RESUMEN

Tiamulin and valnemulin target the peptidyl transferase centre (PTC) on the bacterial ribosome. They are used in veterinary medicine to treat infections caused by a variety of bacterial pathogens, including the intestinal spirochetes Brachyspira spp. Mutations in ribosomal protein L3 and 23S rRNA have previously been associated with tiamulin resistance in Brachyspira spp. isolates, but as multiple mutations were isolated together, the roles of the individual mutations are unclear. In this work, individual 23S rRNA mutations associated with pleuromutilin resistance at positions 2055, 2447, 2504 and 2572 (Escherichia coli numbering) are introduced into a Mycobacterium smegmatis strain with a single rRNA operon. The single mutations each confer a significant and similar degree of valnemulin resistance and those at 2447 and 2504 also confer cross-resistance to other antibiotics that bind to the PTC in M. smegmatis. Antibiotic footprinting experiments on mutant ribosomes show that the introduced mutations cause structural perturbations at the PTC and reduced binding of pleuromutilin antibiotics. This work underscores the fact that mutations at nucleotides distant from the pleuromutilin binding site can confer the same level of valnemulin resistance as those at nucleotides abutting the bound drug, and suggests that the former function indirectly by altering local structure and flexibility at the drug binding pocket.


Asunto(s)
Farmacorresistencia Bacteriana , Mycobacterium smegmatis/genética , Peptidil Transferasas/metabolismo , ARN Ribosómico 23S/genética , Antibacterianos/farmacología , Sitios de Unión , Diterpenos/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Peptidil Transferasas/genética , Compuestos Policíclicos , ARN Bacteriano/genética , Operón de ARNr , Pleuromutilinas
5.
Antimicrob Agents Chemother ; 50(7): 2500-5, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16801432

RESUMEN

A novel multidrug resistance phenotype mediated by the Cfr rRNA methyltransferase is observed in Staphylococcus aureus and Escherichia coli. The cfr gene has previously been identified as a phenicol and lincosamide resistance gene on plasmids isolated from Staphylococcus spp. of animal origin and recently shown to encode a methyltransferase that modifies 23S rRNA at A2503. Antimicrobial susceptibility testing shows that S. aureus and E. coli strains expressing the cfr gene exhibit elevated MICs to a number of chemically unrelated drugs. The phenotype is named PhLOPSA for resistance to the following drug classes: Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Each of these five drug classes contains important antimicrobial agents that are currently used in human and/or veterinary medicine. We find that binding of the PhLOPSA drugs, which bind to overlapping sites at the peptidyl transferase center that abut nucleotide A2503, is perturbed upon Cfr-mediated methylation. Decreased drug binding to Cfr-methylated ribosomes has been confirmed by footprinting analysis. No other rRNA methyltransferase is known to confer resistance to five chemically distinct classes of antimicrobials. In addition, the findings described in this study represent the first report of a gene conferring transferable resistance to pleuromutilins and oxazolidinones.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Metiltransferasas/genética , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/clasificación , Cloranfenicol/farmacología , Diterpenos/farmacología , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Lincosamidas , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Oxazolidinonas/farmacología , Peptidil Transferasas/metabolismo , Compuestos Policíclicos , Ribosomas/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Estreptogramina A/farmacología , Tianfenicol/análogos & derivados , Tianfenicol/farmacología , Pleuromutilinas
6.
J Biol Chem ; 281(31): 22108-22117, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16731530

RESUMEN

Ribosomal RNA from all organisms contains post-transcriptionally modified nucleotides whose function is far from clear. To gain insight into the molecular interactions of modified nucleotides, we investigated the modification status of Thermus thermophilus 5 S and 23 S ribosomal RNA by mass spectrometry and chemical derivatization/primer extension. A total of eleven modified nucleotides was found in 23 S rRNA, of which eight were singly methylated nucleotides and three were pseudouridines. These modified nucleotides were mapped into the published three-dimensional ribosome structure. Seven of the modified nucleotides located to domain IV, and four modified nucleotides located to domain V of the 23 S rRNA. All posttranscriptionally modified nucleotides map in the center of the ribosome, and none of them are in contact with ribosomal proteins. All except one of the modified nucleotides were found in secondary structure elements of the 23 S ribosomal RNA that contact either 16 S ribosomal RNA or transfer RNA, with five of these nucleotides physically involved in intermolecular RNA-RNA bridges. These findings strongly suggest that the post-transcriptional modifications play a role in modulating intermolecular RNA-RNA contacts, which is the first suggestion on a specific function of endogenous ribosomal RNA modifications.


Asunto(s)
Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico 23S/metabolismo , Thermus thermophilus/genética , Sitios de Unión , Espectrometría de Masas , Nucleótidos/análisis , Etiquetado in Situ Primed , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/metabolismo
7.
Nat Rev Microbiol ; 3(11): 870-81, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16261170

RESUMEN

Many clinically useful antibiotics exert their antimicrobial effects by blocking protein synthesis on the bacterial ribosome. The structure of the ribosome has recently been determined by X-ray crystallography, revealing the molecular details of the antibiotic-binding sites. The crystal data explain many earlier biochemical and genetic observations, including how drugs exercise their inhibitory effects, how some drugs in combination enhance or impede each other's binding, and how alterations to ribosomal components confer resistance. The crystal structures also provide insight as to how existing drugs might be derivatized (or novel drugs created) to improve binding and circumvent resistance.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Ribosomas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Bacterias/ultraestructura , Sitios de Unión , Resistencia a Medicamentos , Macrólidos/química , Macrólidos/metabolismo , Macrólidos/farmacología , Modelos Moleculares , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo
8.
J Mol Biol ; 348(3): 563-73, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15826654

RESUMEN

Post-transcriptional modifications were mapped in domains II, IV and V of 23S RNA from the archaeon Haloarcula marismortui. The RNA was investigated by two primer extension techniques using reverse transcriptase and three mass spectrometry techniques. One primer extension technique utilized decreasing concentrations of deoxynucleotide triphosphates to detect 2'-O-ribose methylations and other polymerase blocking modifications. In the other, the rRNA was chemically modified, followed by mild alkaline hydrolysis to map pseudo-uridine groups (Psis). RNA fragments for mass spectrometry were isolated from 23S rRNA by site-directed RNase H or mung bean nuclease digestion followed by gel purification. Modified RNase digestion fragments were identified with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) and the modifications were further studied by tandem MS. Psis suggested by the primer extension technique were verified by specific cyanoethylation and mass spectrometric detection. A total of only five post-transcriptionally methylated nucleotides and three Psis were detected in the three 23S rRNA domains. One of the methylated nucleotides has not been reported while a dispute about the number of Psis is solved. The limited number of modified nucleotides suggests that H. marismortui does not have special needs for extensive rRNA modifications. We have performed detailed investigations on the three-dimensional location and molecular interactions of the modified nucleotides by computer analysis. Our results show that all the modified positions are at regions with RNA-RNA contacts and all except one are at the surface of the subunit and in functionally important regions.


Asunto(s)
Haloarcula marismortui/genética , Procesamiento Postranscripcional del ARN , ARN de Archaea/química , ARN Ribosómico 23S/química , Haloarcula marismortui/química , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Archaea/genética , ARN Ribosómico 23S/genética
9.
Antimicrob Agents Chemother ; 49(4): 1553-5, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15793137

RESUMEN

The mechanisms by which rRNA mutations confer clindamycin resistance were examined in Mycobacterium smegmatis strains containing homogeneous populations of ribosomes with base substitutions at nucleotides A2058 and A2059. Computer graphic predictions based on structural studies correlate with the resistance phenotypes for six of seven strains with unique rRNA mutations.


Asunto(s)
Antibacterianos/farmacología , Clindamicina/farmacología , Farmacorresistencia Bacteriana/genética , Mutación , Mycobacterium smegmatis/efectos de los fármacos , ARN Ribosómico/genética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mycobacterium smegmatis/genética , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética
10.
Mol Microbiol ; 54(5): 1295-306, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15554969

RESUMEN

The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.


Asunto(s)
Diterpenos/farmacología , Farmacorresistencia Bacteriana/genética , Mutación , ARN Ribosómico 23S/genética , Proteínas Ribosómicas/genética , Spirochaetales/efectos de los fármacos , Sustitución de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Secuencia de Bases , Análisis Mutacional de ADN , Diterpenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Bacteriano/genética , Proteína Ribosomal L3 , Spirochaetales/genética
11.
J Mol Biol ; 342(5): 1569-81, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15364582

RESUMEN

Macrolides are a diverse group of antibiotics that inhibit bacterial growth by binding within the peptide tunnel of the 50S ribosomal subunit. There is good agreement about the architecture of the macrolide site from different crystallography studies of bacterial and archaeal 50S subunits. These structures show plainly that 23S rRNA nucleotides A2058 and A2059 are located accessibly on the surface of the tunnel wall where they act as key contact sites for macrolide binding. However, the molecular details of how macrolides fit into this site remain a matter of contention. Here, we have generated an isogenic set of single and dual substitutions at A2058 and A2059 in Mycobacterium smegmatis to investigate the effects of the rRNA mutations on macrolide binding. Resistances conferred to a comprehensive array of 11 macrolide compounds are used to assess models of macrolide binding predicted from the crystal structures. The data indicate that all macrolides and their derivatives bind at the same site in the tunnel with their C5 amino sugar in a similar orientation. Our data are compatible with the lactone rings of 14-membered and 16-membered macrolides adopting different conformations, enabling the latter compounds to avoid a steric clash with 2058G. This difference, together with interactions conveyed via substituents that are specific to certain ketolide and macrolide sub-classes, influences the binding to the large ribosomal subunit. Our genetic data show no support for a derivatized-macrolide binding site that has been proposed to be located further down the tunnel.


Asunto(s)
Antibacterianos/metabolismo , Macrólidos/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Simulación por Computador , Farmacorresistencia Bacteriana , Mutagénesis , ARN Ribosómico 23S/genética
12.
Antimicrob Agents Chemother ; 48(10): 3677-83, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15388419

RESUMEN

Ketolides are the latest derivatives developed from the macrolide erythromycin to improve antimicrobial activity. All macrolides and ketolides bind to the 50S ribosomal subunit, where they come into contact with adenosine 2058 (A2058) within domain V of the 23S rRNA and block protein synthesis. An additional interaction at nucleotide A752 in the rRNA domain II is made via the synthetic carbamate-alkyl-aryl substituent in the ketolides HMR3647 (telithromycin) and HMR3004, and this interaction contributes to their improved activities. Only a few macrolides, including tylosin, come into contact with domain II of the rRNA and do so via interactions with nucleotides G748 and A752. We have disrupted these macrolide-ketolide interaction sites in the rRNA to assess their relative importance for binding. Base substitutions at A752 were shown to confer low levels of resistance to telithromycin but not to HMR3004, while deletion of A752 confers low levels of resistance to both ketolides. Mutations at position 748 confer no resistance. Substitution of guanine at A2058 gives rise to the MLS(B) (macrolide, lincosamide, and streptogramin B) phenotype, which confers resistance to all the drugs. However, resistance to ketolides was abolished when the mutation at position 2058 was combined with a mutation in domain II of the same rRNA. In contrast, the same dual mutations in rRNAs conferred enhanced resistance to tylosin. Our results show that the domain II interactions of telithromycin and HMR3004 differ from each other and from those of tylosin. The data provide no indication that mutations within domain II, either alone or in combination with an A2058 mutation, can confer significant levels of telithromycin resistance.


Asunto(s)
Antibacterianos/farmacología , ARN Ribosómico 23S/efectos de los fármacos , Eritromicina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Cetólidos/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Plásmidos/efectos de los fármacos , Plásmidos/genética , Tilosina/farmacología
13.
J Mol Biol ; 337(5): 1073-7, 2004 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-15046978

RESUMEN

The methyltransferase RlmA(II) (TlrB) confers resistance to the macrolide antibiotic tylosin in the drug-producing strain Streptomyces fradiae. The resistance conferred by RlmA(II) is highly specific for tylosin, and no resistance is conferred to other macrolide drugs, or to lincosamide and streptogramin B (MLS(B)) drugs that bind to the same region on the bacterial ribosome. In this study, the methylation site of RlmA(II) is identified unambiguously by liquid chromatography/electrospray ionization mass spectrometry as the N-1 position of 23S rRNA nucleotide G748. This position is contacted by the mycinose sugar moiety of tylosin, which is absent from the other drugs. The selective resistance to tylosin conferred by m(1)G748 illustrates how differences in drug structure facilitate the drug fit at the MLS(B)-binding site. This observation is of relevance for the rational design of novel antimicrobials targeting the MLS(B) site, especially if the antimicrobials are to be used against pathogens possessing m(1)G748.


Asunto(s)
Farmacorresistencia Microbiana , Metiltransferasas/metabolismo , ARN Ribosómico 23S/metabolismo , Tilosina/farmacología , Sitios de Unión , Metilación , Espectrometría de Masa por Ionización de Electrospray , Streptomyces/enzimología , Relación Estructura-Actividad , Tilosina/química
14.
Curr Opin Investig Drugs ; 4(2): 140-8, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12669373

RESUMEN

Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/fisiología , Ribosomas/efectos de los fármacos , Antibacterianos/química , Bacterias/genética , Bacterias/ultraestructura , Macrólidos , Metilación , Modelos Moleculares , Mutación , ARN Ribosómico 23S/efectos de los fármacos , ARN Ribosómico 23S/genética
15.
Curr Drug Targets Infect Disord ; 2(1): 67-78, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12462154

RESUMEN

Macrolides are a diverse group of antimicrobials that are widely prescribed in clinical and veterinary medicine. Macrolides inhibit bacterial growth by interacting with the large (50S) subunit of the ribosome and thereby blocking protein synthesis. The liberal application of macrolides and the mechanistically similar lincosamide and streptogramin B compounds has in recent years led to increased prevalence of resistance to these drugs. To counteract this trend and improve the efficacy of treatment, numerous macrolide derivatives have been developed and the latest of these, the ketolides, are now becoming available for clinical use. However, in the on-going battle against resistance pathogens continual improvement of drugs will be necessary, and more efficient means of drug development are required. An indication of how rational drug design might be feasible is offered by the recent crystallographic structures of the bacterial ribosome. These structures give us a view of the macrolide target at previously unseen resolution, enabling us to understand the molecular details of macrolide interaction and resistance, and provide strong clues about potential new drug targets.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/metabolismo , Ribosomas/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/ultraestructura , Sitios de Unión , Resistencia a Medicamentos , Humanos , Macrólidos , Modelos Moleculares , Mutación/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética , Ribosomas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...