Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 16: 825695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250488

RESUMEN

The Drosophila nervous system comprises a small number of well characterized glial cell classes. The outer surface of the central nervous system (CNS) is protected by a glial derived blood-brain barrier generated by perineurial and subperineurial glia. All neural stem cells and all neurons are engulfed by cortex glial cells. The inner neuropil region, that harbors all synapses and dendrites, is covered by ensheathing glia and infiltrated by astrocyte-like glial cells. All these glial cells show a tiled organization with an often remarkable plasticity where glial cells of one cell type invade the territory of the neighboring glial cell type upon its ablation. Here, we summarize the different glial tiling patterns and based on the different modes of cell-cell contacts we hypothesize that different molecular mechanisms underlie tiling of the different glial cell types.

3.
Biol Open ; 11(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34897385

RESUMEN

Neuronal processing is energy demanding and relies on sugar metabolism. To nurture the Drosophila nervous system, the blood-brain barrier forming glial cells take up trehalose from the hemolymph and then distribute the metabolic products further to all neurons. This function is provided by glucose and lactate transporters of the solute carrier (SLC) 5A family. Here we identified three SLC5A genes that are specifically expressed in overlapping sets of CNS glial cells, rumpel, bumpel and kumpel. We generated mutants in all genes and all mutants are viable and fertile, lacking discernible phenotypes. Loss of rumpel causes subtle locomotor phenotypes and flies display increased daytime sleep. In addition, in bumpel kumpel double mutants, and to an even greater extent in rumpel bumpel kumpel triple mutants, oogenesis is disrupted at the onset of the vitollegenic phase. This indicates a partially redundant function between these genes. Rescue experiments exploring this effect indicate that oogenesis can be affected by CNS glial cells. Moreover, expression of heterologous mammalian SLC5A transporters, with known transport properties, suggest that Bumpel and/or Kumpel transport glucose or lactate. Overall, our results imply a redundancy in SLC5A nutrient sensing functions in Drosophila glial cells, affecting ovarian development and behavior.


Asunto(s)
Proteínas de Drosophila , Neuroglía , Animales , Barrera Hematoencefálica/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mamíferos/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo
4.
Nat Commun ; 12(1): 6357, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737284

RESUMEN

In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Neurópilo/metabolismo , Espectrina/metabolismo , Animales , Linaje de la Célula , Drosophila , Glicoproteínas/metabolismo , Larva , Proteínas del Tejido Nervioso/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
5.
Dev Neurobiol ; 81(5): 438-452, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32096904

RESUMEN

Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Mamíferos , Neuroglía/fisiología , Neuronas/fisiología
6.
Biol Chem ; 396(12): 1315-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26351907

RESUMEN

Changes of Leu109 and Arg448 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have as yet not been associated with altered fitness. However, in a recent study, we described that the simultaneous substitution of L109 and R448 by methionine leads to an error-producing polymerase phenotype that is not observed for the isolated substitutions. The double mutant increased the error rate of DNA-dependent DNA synthesis 3.1-fold as compared to the wildtype enzyme and showed a mutational spectrum with a fraction of 28% frameshift mutations and 48% transitions. We show here that weaker binding of DNA:DNA primer-templates as indicated by an increased dissociation rate constant (koff) could account for the higher frameshift error rate. Furthermore, we were able to explain the prevalence of transition mutations with the finding that HIV-1 RT variant L109M/R448M preferred misincorporation of C opposite A and elongation of C:A mismatches.


Asunto(s)
Replicación del ADN/genética , Transcriptasa Inversa del VIH/genética , VIH-1/enzimología , VIH-1/genética , Mutación , Disparidad de Par Base/genética , Humanos , Modelos Moleculares , Elongación de la Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...