Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med ; 53: 25-31, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30241751

RESUMEN

PURPOSE: Measurement-based pre-treatment verification with phantoms frequently uses gamma analysis to assess acceptable delivery accuracy. This study evaluates the sensitivity of a commercial system to simulated machine errors for three different institutions' Volumetric Modulated Arc Therapy (VMAT) planning approaches. METHODS: VMAT plans were generated for ten patients at three institutions using each institution's own protocol (manually-planned at institution 1; auto-planned at institutions 2 and 3). Errors in Multi-Leaf Collimator (MLC) field size (FS), MLC shift (S), and collimator angle (C) of -5, -2, -1, 1, 2 and 5 mm or degrees were introduced. Dose metric constraints discriminated which error magnitudes were considered unacceptable. The smallest magnitude error treatment plans deemed clinically unacceptable (typically for a 5% dose change) were delivered to the ArcCHECK for all institutions, and with a high-dose point ion chamber measurement in 2 institutions. Error detection for different gamma analysis criteria was compared. RESULTS: Not all deliberately introduced VMAT plan errors were detected using a typical 3D 3%/3 mm global gamma pass rate of 95%. Considering all institutions, gamma analysis was least sensitive to negative FS errors. The most sensitive was a 2%/2 mm global analysis for institution 1, whilst for institution 2 it was 3%/3 mm global analysis. The majority of errors (58/59 for institution 1, 54/60 for institution 3) were detected using ArcCHECK and ion chamber measurements combined. CONCLUSIONS: Not all clinically unacceptable errors are detected. Combining ion chamber measurements with gamma analysis improved sensitivity and is recommended. Optimum gamma settings varied across institutions.


Asunto(s)
Errores Médicos , Nasofaringe/efectos de la radiación , Garantía de la Calidad de Atención de Salud/métodos , Radioterapia de Intensidad Modulada , Humanos , Radiometría
2.
Med Phys ; 43(12): 6644, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27908181

RESUMEN

PURPOSE: Uncertainty in target volume delineation for modern radiotherapy impacts dosimetry and patient outcomes. Delineation uncertainty is generally overlooked in practice as a source of error, potentially since historically, other uncertainties have been the main focus. This work defined and assessed an anisotropic delineation margin in both polar and spherical coordinate systems in order to account for the spatially varying nature of this uncertainty using a whole breast radiotherapy cohort as a proof of concept. METHODS: A cohort of 21 whole breast radiotherapy patient datasets with clinical target volumes delineated by eight independent observers was utilized. Patients were divided into categories based on target volume and laterality. An anisotropic delineation margin for each category was determined by multiplying the average standard deviation in observer contours in each category by a factor of two. Standard deviation was determined in both polar and spherical coordinates at angular increments. This anisotropic approach was compared to a conventional clinical approach, where the delineation margin was applied in the cardinal directions only. The assessment of the delineation margin was undertaken by comparing the encompassment of the observer volumes by the target volume with added margin. The extra, presumed healthy tissue included in the margin and the malignant tissue missed by the margin were determined. RESULTS: The proposed delineation margin is effective at accounting for inter-observer variation, producing >95% coverage of all CTVs for polar, spherical, and Cartesian margins in 82%, 79%, and 92% of cases, respectively. Additionally, <1% malignant tissue was missed for 65%, 70%, and 91% of cases and <37% healthy tissue was included in 95%, 89%, and 97% of cases. A conventional delineation margin approach is most appropriate for small and gold standard target volumes. However, for large target volumes, an anisotropic margin is necessary, producing significantly greater coverage of CTVs, including significantly less presumed healthy tissue and missing significantly less malignant tissue. CONCLUSIONS: All delineation margin methods that account for target volume and laterality proved to be adequate, with appropriate encompassment of interobserver variation and minimal inclusion of extra excess healthy tissue and exclusion of possible malignant tissue. The anisotropic approach was found to be superior to a conventional approach for target volumes >1400 cm3 only with significantly greater encompassment of interobserver variation, less missed malignant tissue and less included healthy tissue. This methodology has been validated for a whole breast radiotherapy cohort as a proof of concept, however could be applied to other anatomical sites.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Anisotropía , Neoplasias de la Mama/radioterapia , Humanos , Radiometría , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...