Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phys Med Biol ; 69(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38729212

RESUMEN

Objective.Online adaptive radiotherapy (OART) is a promising technique for delivering stereotactic accelerated partial breast irradiation (APBI), as lumpectomy cavities vary in location and size between simulation and treatment. However, OART is resource-intensive, increasing planning and treatment times and decreasing machine throughput compared to the standard of care (SOC). Thus, it is pertinent to identify high-yield OART candidates to best allocate resources.Approach.Reference plans (plans based on simulation anatomy), SOC plans (reference plans recalculated onto daily anatomy), and daily adaptive plans were analyzed for 31 sequential APBI targets, resulting in the analysis of 333 treatment plans. Spearman correlations between 22 reference plan metrics and 10 adaptive benefits, defined as the difference between mean SOC and delivered metrics, were analyzed to select a univariate predictor of OART benefit. A multivariate logistic regression model was then trained to stratify high- and low-benefit candidates.Main results.Adaptively delivered plans showed dosimetric benefit as compared to SOC plans for most plan metrics, although the degree of adaptive benefit varied per patient. The univariate model showed high likelihood for dosimetric adaptive benefit when the reference plan ipsilateral breast V15Gy exceeds 23.5%. Recursive feature elimination identified 5 metrics that predict high-dosimetric-benefit adaptive patients. Using leave-one-out cross validation, the univariate and multivariate models classified targets with 74.2% and 83.9% accuracy, resulting in improvement in per-fraction adaptive benefit between targets identified as high- and low-yield for 7/10 and 8/10 plan metrics, respectively.Significance.This retrospective, exploratory study demonstrated that dosimetric benefit can be predicted using only ipsilateral breast V15Gy on the reference treatment plan, allowing for a simple, interpretable model. Using multivariate logistic regression for adaptive benefit prediction led to increased accuracy at the cost of a more complicated model. This work presents a methodology for clinics wishing to triage OART resource allocation.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Automático , Planificación de la Radioterapia Asistida por Computador , Humanos , Neoplasias de la Mama/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Femenino , Radiocirugia/métodos
2.
Adv Radiat Oncol ; 9(4): 101417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38435965

RESUMEN

Purpose: The use of deep learning to auto-contour organs at risk (OARs) in gynecologic radiation treatment is well established. Yet, there is limited data investigating the prospective use of auto-contouring in clinical practice. In this study, we assess the accuracy and efficiency of auto-contouring OARs for computed tomography-based brachytherapy treatment planning of gynecologic malignancies. Methods and Materials: An inhouse contouring tool automatically delineated 5 OARs in gynecologic radiation treatment planning: the bladder, small bowel, sigmoid, rectum, and urethra. Accuracy of each auto-contour was evaluated using a 5-point Likert scale: a score of 5 indicated the contour could be used without edits, while a score of 1 indicated the contour was unusable. During scoring, automated contours were edited and subsequently used for treatment planning. Dice similarity coefficient, mean surface distance, 95% Hausdorff distance, Hausdorff distance, and dosimetric changes between original and edited contours were calculated. Contour approval time and total planning time of a prospective auto-contoured (AC) cohort were compared with times from a retrospective manually contoured (MC) cohort. Results: Thirty AC cases from January 2022 to July 2022 and 31 MC cases from July 2021 to January 2022 were included. The mean (±SD) Likert score for each OAR was the following: bladder 4.77 (±0.58), small bowel 3.96 (±0.91), sigmoid colon 3.92 (±0.81), rectum 4.6 (±0.71), and urethra 4.27 (±0.78). No ACs required major edits. All OARs had a mean Dice similarity coefficient > 0.86, mean surface distance < 0.48 mm, 95% Hausdorff distance < 3.2 mm, and Hausdorff distance < 10.32 mm between original and edited contours. There was no significant difference in dose-volume histogram metrics (D2.0 cc/D0.1 cc) between original and edited contours (P values > .05). The average time to plan approval in the AC cohort was 19% less than the MC cohort. (AC vs MC, 117.0 + 18.0 minutes vs 144.9 ± 64.5 minutes, P = .045). Conclusions: Automated contouring is useful and accurate in clinical practice. Auto-contouring OARs streamlines radiation treatment workflows and decreases time required to design and approve gynecologic brachytherapy plans.

3.
Adv Radiat Oncol ; 9(3): 101414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38292886

RESUMEN

Purpose: Accelerated partial breast irradiation (APBI) is an attractive treatment modality for eligible patients as it has been shown to result in similar local control and improved cosmetic outcomes compared with whole breast radiation therapy. The use of online adaptive radiation therapy (OART) for APBI is promising as it allows for a reduction of planning target volume margins because breast motion and lumpectomy cavity volume changes are accounted for in daily imaging. Here we present a retrospective, single-institution evaluation on the adequacy of kV-cone beam computed tomography (CBCT) OART for APBI treatments. Methods and Materials: Nineteen patients (21 treatment sites) were treated to 30 Gy in 5 fractions between January of 2022 and May of 2023. Time between simulation and treatment, change in gross tumor (ie, lumpectomy cavity) volume, and differences in dose volume histogram metrics with adaption were analyzed. The Wilcoxon paired, nonparametric test was used to test for dose volume histogram metric differences between the scheduled plans (initial plans recalculated on daily CBCT anatomy) and delivered plans, either the scheduled or adapted plan, which was reoptimized using daily anatomy. Results: Median (interquartile range) time from simulation to first treatment was 26 days (21-32 days). During this same time, median gross tumor volume reduction was 16.0% (7.3%-23.9%) relative to simulation volume. Adaptive treatments took 31.3 minutes (27.4-36.6 minutes) from start of CBCT to treatment session end. At treatment, the adaptive plan was selected for 86% (89/103) of evaluable fractions. In evaluating plan quality, 78% of delivered plans met all target, organs at risk, and conformity metrics evaluated, compared with 34% of scheduled plans. Conclusions: Use of OART for stereotactic linac-based APBI allowed for safe, high-quality treatments in this cohort of 21 treatment courses. Although treatment delivery times were longer than traditional stereotactic body treatments, there were notable improvements in plan quality for APBI using OART.

4.
J Appl Clin Med Phys ; 24(10): e14152, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37703545

RESUMEN

PURPOSE: Knowledge-based planning (KBP) offers the ability to predict dose-volume metrics based on information extracted from previous plans, reducing plan variability and improving plan quality. As clinical integration of KBP is increasing there is a growing need for quantitative evaluation of KBP models. A .NET-based application, RapidCompare, was created for automated plan creation and analysis of Varian RapidPlan models. METHODS: RapidCompare was designed to read calculation parameters and a list of reference plans. The tool copies the reference plan field geometry and structure set, applies the RapidPlan model, optimizes the KBP plan, and generates data for quantitative evaluation of dose-volume metrics. A cohort of 85 patients, divided into training (50), testing (10), and validation (25) groups, was used to demonstrate the utility of RapidCompare. After training and tuning, the KBP model was paired with three different optimization templates to compare various planning strategies in the validation cohort. All templates used the same set of constraints for the planning target volume (PTV). For organs-at-risk, the optimization template provided constraints using the whole dose-volume histogram (DVH), fixed-dose/volume points, or generalized equivalent uniform dose (gEUD). The resulting plans from each optimization approach were compared using DVH metrics. RESULTS: RapidCompare allowed for the automated generation of 75 total plans for comparison with limited manual intervention. In comparing optimization techniques, the Dose/Volume and Lines optimization templates generated plans with similar DVH metrics, with a slight preference for the Lines technique with reductions in heart V30Gy and spinal cord max dose. The gEUD model produced high target heterogeneity. CONCLUSION: Automated evaluation allowed for the exploration of multiple optimization templates in a larger validation cohort than would have been feasible using a manual approach. A final KBP model using line optimization objectives produced the highest quality plans without human intervention.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo , Radioterapia de Intensidad Modulada/métodos , Benchmarking
5.
J Appl Clin Med Phys ; 24(12): e14133, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37643456

RESUMEN

PURPOSE: With the clinical implementation of kV-CBCT-based daily online-adaptive radiotherapy, the ability to monitor, quantify, and correct patient movement during adaptive sessions is paramount. With sessions lasting between 20-45 min, the ability to detect and correct for small movements without restarting the entire session is critical to the adaptive workflow and dosimetric outcome. The purpose of this study was to quantify and evaluate the correlation of observed patient movement with machine logs and a surface imaging (SI) system during adaptive radiation therapy. METHODS: Treatment machine logs and SGRT registration data log files for 1972 individual sessions were exported and analyzed. For each session, the calculated shifts from a pre-delivery position verification CBCT were extracted from the machine logs and compared to the SGRT registration data log files captured during motion monitoring. The SGRT calculated shifts were compared to the reported shifts of the machine logs for comparison for all patients and eight disease site categories. RESULTS: The average (±STD) net displacement of the SGRT shifts were 2.6 ± 3.4 mm, 2.6 ± 3.5 mm, and 3.0 ± 3.2 in the lateral, longitudinal, and vertical directions, respectively. For the treatment machine logs, the average net displacements in the lateral, longitudinal, and vertical directions were 2.7 ± 3.7 mm, 2.6 ± 3.7 mm, and 3.2 ± 3.6 mm. The average difference (Machine-SGRT) was -0.1 ± 1.8 mm, 0.2 ± 2.1 mm, and -0.5 ± 2.5 mm for the lateral, longitudinal, and vertical directions. On average, a movement of 5.8 ± 5.6 mm and 5.3 ± 4.9 mm was calculated prior to delivery for the CBCT and SGRT systems, respectively. The Pearson correlation coefficient between CBCT and SGRT shifts was r = 0.88. The mean and median difference between the treatment machine logs and SGRT log files was less than 1 mm for all sites. CONCLUSION: Surface imaging should be used to monitor and quantify patient movement during adaptive radiotherapy.


Asunto(s)
Radioterapia Guiada por Imagen , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Radioterapia Guiada por Imagen/métodos , Posicionamiento del Paciente/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Movimiento , Dosificación Radioterapéutica , Tomografía Computarizada de Haz Cónico/métodos
6.
Adv Radiat Oncol ; 8(6): 101292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457825

RESUMEN

Purpose: Currently, there is insufficient guidance for standard fractionation lung planning using the Varian Ethos adaptive treatment planning system and its unique intelligent optimization engine. Here, we address this gap in knowledge by developing a methodology to automatically generate high-quality Ethos treatment plans for locally advanced lung cancer. Methods and Materials: Fifty patients previously treated with manually generated Eclipse plans for inoperable stage IIIA-IIIC non-small cell lung cancer were included in this institutional review board-approved retrospective study. Fifteen patient plans were used to iteratively optimize a planning template for the Daily Adaptive vs Non-Adaptive External Beam Radiation Therapy With Concurrent Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Prospective Randomized Trial of an Individualized Approach for Toxicity Reduction (ARTIA-Lung); the remaining 35 patients were automatically replanned without intervention. Ethos plan quality was benchmarked against clinical plans and reoptimized knowledge-based RapidPlan (RP) plans, then judged using standard dose-volume histogram metrics, adherence to clinical trial objectives, and qualitative review. Results: Given equal prescription target coverage, Ethos-generated plans showed improved primary and nodal planning target volume V95% coverage (P < .001) and reduced lung gross tumor volume V5 Gy and esophagus D0.03 cc metrics (P ≤ .003) but increased mean esophagus and brachial plexus D0.03 cc metrics (P < .001) compared with RP plans. Eighty percent, 49%, and 51% of Ethos, clinical, and RP plans, respectively, were "per protocol" or met "variation acceptable" ARTIA-Lung planning metrics. Three radiation oncologists qualitatively scored Ethos plans, and 78% of plans were clinically acceptable to all reviewing physicians, with no plans receiving scores requiring major changes. Conclusions: A standard Ethos template produced lung radiation therapy plans with similar quality to RP plans, elucidating a viable approach for automated plan generation in the Ethos adaptive workspace.

7.
J Appl Clin Med Phys ; 24(7): e13961, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36920871

RESUMEN

PURPOSE: Online Adaptive Radiation Therapy (oART) follows a different treatment paradigm than conventional radiotherapy, and because of this, the resources, implementation, and workflows needed are unique. The purpose of this report is to outline our institution's experience establishing, organizing, and implementing an oART program using the Ethos therapy system. METHODS: We include resources used, operational models utilized, program creation timelines, and our institutional experiences with the implementation and operation of an oART program. Additionally, we provide a detailed summary of our first year's clinical experience where we delivered over 1000 daily adaptive fractions. For all treatments, the different stages of online adaption, primary patient set-up, initial kV-CBCT acquisition, contouring review and edit of influencer structures, target review and edits, plan evaluation and selection, Mobius3D 2nd check and adaptive QA, 2nd kV-CBCT for positional verification, treatment delivery, and patient leaving the room, were analyzed. RESULTS: We retrospectively analyzed data from 97 patients treated from August 2021-August 2022. One thousand six hundred seventy seven individual fractions were treated and analyzed, 632(38%) were non-adaptive and 1045(62%) were adaptive. Seventy four of the 97 patients (76%) were treated with standard fractionation and 23 (24%) received stereotactic treatments. For the adaptive treatments, the generated adaptive plan was selected in 92% of treatments. On average(±std), adaptive sessions took 34.52 ± 11.42 min from start to finish. The entire adaptive process (from start of contour generation to verification CBCT), performed by the physicist (and physician on select days), was 19.84 ± 8.21 min. CONCLUSION: We present our institution's experience commissioning an oART program using the Ethos therapy system. It took us 12 months from project inception to the treatment of our first patient and 12 months to treat 1000 adaptive fractions. Retrospective analysis of delivered fractions showed that the average overall treatment time was approximately 35 min and the average time for the adaptive component of treatment was approximately 20 min.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Estudios Retrospectivos , Fraccionamiento de la Dosis de Radiación , Dosificación Radioterapéutica
8.
Front Oncol ; 13: 1130119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845685

RESUMEN

Background: Accelerated partial breast irradiation (APBI) yields similar rates of recurrence and cosmetic outcomes as compared to whole breast radiation therapy (RT) when patients and treatment techniques are appropriately selected. APBI combined with stereotactic body radiation therapy (SBRT) is a promising technique for precisely delivering high levels of radiation while avoiding uninvolved breast tissue. Here we investigate the feasibility of automatically generating high quality APBI plans in the Ethos adaptive workspace with a specific emphasis on sparing the heart. Methods: Nine patients (10 target volumes) were utilized to iteratively tune an Ethos APBI planning template for automatic plan generation. Twenty patients previously treated on a TrueBeam Edge accelerator were then automatically replanned using this template without manual intervention or reoptimization. The unbiased validation cohort Ethos plans were benchmarked via adherence to planning objectives, a comparison of DVH and quality indices against the clinical Edge plans, and qualitative reviews by two board-certified radiation oncologists. Results: 85% (17/20) of automated validation cohort plans met all planning objectives; three plans did not achieve the contralateral lung V1.5Gy objective, but all other objectives were achieved. Compared to the Eclipse generated plans, the proposed Ethos template generated plans with greater evaluation planning target volume (PTV_Eval) V100% coverage (p = 0.01), significantly decreased heart V1.5Gy (p< 0.001), and increased contralateral breast V5Gy, skin D0.01cc, and RTOG conformity index (p = 0.03, p = 0.03, and p = 0.01, respectively). However, only the reduction in heart dose was significant after correcting for multiple testing. Physicist-selected plans were deemed clinically acceptable without modification for 75% and 90% of plans by physicians A and B, respectively. Physicians A and B scored at least one automatically generated plan as clinically acceptable for 100% and 95% of planning intents, respectively. Conclusions: Standard left- and right-sided planning templates automatically generated APBI plans of comparable quality to manually generated plans treated on a stereotactic linear accelerator, with a significant reduction in heart dose compared to Eclipse generated plans. The methods presented in this work elucidate an approach for generating automated, cardiac-sparing APBI treatment plans for daily adaptive RT with high efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...