Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999961

RESUMEN

Skin wound healing is coordinated by a delicate balance between proinflammatory and anti-inflammatory responses, which can be affected by opportunistic pathogens and metabolic or vascular diseases. Several antimicrobial peptides (AMPs) possess immunomodulatory properties, suggesting their potential to support skin wound healing. Here, we evaluated the proregenerative activity of three recently described AMPs (Clavanin A, Clavanin-MO, and Mastoparan-MO). Human primary dermal fibroblasts (hFibs) were used to determine peptide toxicity and their capacity to induce cell proliferation and migration. Furthermore, mRNA analysis was used to investigate the modulation of genes associated with skin regeneration. Subsequently, the regenerative potential of the peptides was further confirmed using an ex vivo organotypic model of human skin (hOSEC)-based lesion. Our results indicate that the three molecules evaluated in this study have regenerative potential at nontoxic doses (i.e., 200 µM for Clavanin-A and Clavanin-MO, and 6.25 µM for Mastoparan-MO). At these concentrations, all peptides promoted the proliferation and migration of hFibs during in vitro assays. Such processes were accompanied by gene expression signatures related to skin regenerative processes, including significantly higher KI67, HAS2 and CXCR4 mRNA levels induced by Clavanin A and Mastoparan-MO. Such findings translated into significantly accelerated wound healing promoted by both Clavanin A and Mastoparan-MO in hOSEC-based lesions. Overall, the data demonstrate the proregenerative properties of these peptides using human experimental skin models, with Mastoparan-MO and Clavanin A showing much greater potential for inducing wound healing compared to Clavanin-MO.


Asunto(s)
Movimiento Celular , Proliferación Celular , Fibroblastos , Regeneración , Piel , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regeneración/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos Antimicrobianos/farmacología , Células Cultivadas , Péptidos/farmacología
2.
Cytotherapy ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38904584

RESUMEN

BACKGROUND AND AIMS: Ovum pick-up (OPU) is an intrinsic step of in vitro fertilization procedures. Nevertheless, it can cause ovarian lesions and compromise female fertility in bovines. Recently, we have shown that intraovarian injection of adipose-derived mesenchymal stromal cells (AD-MSCs) effectively preserves ovarian function in bovines. Given that MSC-derived extracellular vesicles (MSC-EVs) have been shown to recapitulate several therapeutic effects attributed to AD-MSCs and that they present logistic and regulatory advantages compared to AD-MSCs, we tested whether MSC-EVs would also be useful to treat OPU-induced lesions. METHODS: MSC-EVs were isolated from the secretome of bovine AD-MSCs, using ultrafiltration (UF) and ultracentrifugation methods. The MSC-EVs were characterized according to concentration and mean particle size, morphology, protein concentration and EV markers, miRNA, mRNA, long noncoding RNA profile, total RNA yield and potential for induction of the proliferation and migration of bovine ovarian stromal cells. We then investigated whether intraovarian injection of MSC-EVs obtained by UF would reduce the negative effects of acute OPU-induced ovarian lesions in bovines. To do so, 20 animals were divided into 4 experimental groups (n = 5), submitted to 4 OPU cycles and different experimental treatments including vehicle only (G1), MSC-EVs produced by 7.5 × 106 AD-MSCs (G2), MSC-EVs produced by 2.5 × 106 AD-MSCs (G3) or 3 doses of MSC-EVs produced by 2.5 × 106 AD-MSCs, injected after OPU sessions 1, 2 and 3 (G4). RESULTS: Characterization of the MSC-EVs revealed that the size of the particles was similar in the different isolation methods; however, the UF method generated a greater MSC-EV yield. MSC-EVs processed by both methods demonstrated a similar ability to promote cell migration and proliferation in ovarian stromal cells. Considering the higher yield and lower complexity of the UF method, UF-MSC-EVs were used in the in vivo experiment. We evaluated three therapeutic regimens for cows subjected to OPU, noting that the group treated with three MSC-EV injections (G4) maintained oocyte production and increased in vitro embryo production, compared to G1, which presented compromised embryo production following the OPU-induced lesions. CONCLUSIONS: MSC-EVs have beneficial effects both on the migration and proliferation of ovarian stromal cells and on the fertility of bovines with follicular puncture injury in vivo.

3.
Cells ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38786036

RESUMEN

Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation.


Asunto(s)
Macrófagos , Monocitos , Células TH1 , Humanos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/metabolismo , Péptidos/farmacología , Lipopolisacáridos/farmacología , Citocinas/metabolismo , Interleucina-10/metabolismo , Activación de Linfocitos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
4.
Mar Environ Res ; 196: 106404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341981

RESUMEN

Shellfish species, including oysters, clams, and mussels, are extensively cultured in coastal waters. Its location is determined by factors such as nutrient availability, water temperature, tidal cycle, and the presence of contaminants such as Escherichia coli and enteric viruses. With the expansion and intensification of human activities at vicinities, the presence of anthropogenic contaminants has increased, threatening shellfish farms and consumer safety give the prevalent consumption of raw shellfish. This literature review aims to provide a comprehensive analysis of the dietary exposure and assess the risk associated with enteric viruses and bacteria detected in shellfish. The predominant bacteria and viruses detected in shellfish are reported, and the potential interrelation is discussed. The main characteristics of each contaminant and shellfish were reviewed for a more comprehensive understanding. To facilitate a direct estimation of exposure, the estimated daily intake (EDI) of bacteria was calculated based on the average levels of E. coli in shellfish, as reported in the literature. The mean daily ingestion of seafood in each of the five continents was considered. Asia exhibited the highest intake of contaminants, with an average of ±5.6 E. coli units/day.kg body weight in cockles. Simulations were conducted using recommended shellfish consumption levels established by state agencies, revealing significantly lower (p < 0.01) EDI for all continents compared to estimations based on recommended levels. This indicates a higher risk associated with healthy shellfish ingestion, potentially leading to increased intoxication incidents with a change in dietary habits. To promote a healthier lifestyle through increased shellfish consumptions, it is imperative to reduce the exposure of shellfish species to bacteria and enteric viruses. The conventional use of E. coli as the sole indicator for consumption safety and water quality in shellfish farms has been deemed insufficient. Instances where shellfish met E. coli limits established by state agencies were often found to be contaminated with human enteric viruses. Therefore, a holistic approach considering the entire production chain is necessary to support the shellfish industry and ensure food safety.


Asunto(s)
Bivalvos , Enterovirus , Virus , Animales , Humanos , Escherichia coli , Mariscos/análisis , Alimentos Marinos , Contaminación de Alimentos/análisis
5.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569350

RESUMEN

Nanotechnology offers new possibilities in molecular diagnostics, with nanoparticles gaining attention as biosensor upgrades. This study evaluates gold-coated silver nanoplates coated with PEG for enhanced protection, aiming to detect Spike protein with higher sensitivity, and emphasizes the importance of considering complex environments and appropriate controls for specific binding and accurate analysis. The sensitivity of antibody-coated PEGAuTSNPs as tools for immunoassays is demonstrated through fibronectin (Fn)- anti-fibronectin binding within an isolated extracellular matrix as a complex and native environment of Fn. Moreover, the optimal functionalization volume of Spike protein was determined (4 µg/mL of PEGAuTSNP). Anti-Spike was added to confirm binding, while the TJP1 protein was used as a negative control. The same experiment was used in the presence of horse serum to simulate a complex environment. According to Localized Surface Plasmon Resonance analysis and Dynamic Light Scattering size measurements, anti-Spike exhibited a stronger affinity for the nanoplates, causing TJP1 to be replaced by the antibody on the nanoplates' surface. Future research will involve exploring alternative complex environments, filtering larger molecules, and the optimization of immunoassay performance.

6.
Cytotherapy ; 25(9): 930-938, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37341664

RESUMEN

BACKGROUND AIMS: The advanced therapy product tisagenlecleucel is a CD19-directed genetically modified autologous T-cell immunotherapy that has brought hope for children and young adults with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We sought to evaluate the cost-effectiveness of tisagenlecleucel compared with conventional salvage therapies in pediatric and young adult patients with R/R B-ALL. METHODS: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses parameters as registered in International Prospective Register of Systematic Reviews (CRD42021266998). Literature was searched using the MEDLINE databases via PubMed, EMBASE, Lilacs, the Cochrane Central Register of Controlled Trials and Web of Science in January 2022. Titles were screened independently by two reviewers. Articles deemed to meet the inclusion criteria were screened independently on abstract, and full texts were reviewed. RESULTS: In total, 5627 publications were identified, from which six eligible studies were selected. The conventional therapies identified were blinatumomab (Blina), clofarabine monotherapy (Clo-M), clofarabine combined with cyclophosphamide and etoposide (Clo-C) and the combination of fludarabine, cytarabine and idarubicin (FLA-IDA). The discounted incremental cost-effectiveness ratio (ICER) per quality-adjusted life year (QALY) gained for tisagenlecleucel compared with Clo-C and Blina averages was $38 837 and $25 569, respectively. In relation to the cost of the drug, the average of tisagenlecleucel was approximately 4.3 times, 10.8 times or 4.7 times greater than the Clo-M, Clo-C and Blina, respectively. CONCLUSIONS: This systematic review highlighted that tisagenlecleucel is a much more expensive therapy than conventional alternatives. However, tisagenlecleucel performed well on the ICER, not exceeding $100 000/QALY. It was also found that the advanced therapy product was more effective than the conventional small molecule and biological drugs, in terms of life years and QALY gained.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos de Linfocitos T , Humanos , Adulto Joven , Niño , Clofarabina , Análisis Costo-Beneficio , Receptores de Antígenos de Linfocitos T/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recurrencia
7.
Biomolecules ; 13(5)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37238674

RESUMEN

In skin lesions, the development of microbial infection affects the healing process, increasing morbidity and mortality rates in patients with severe burns, diabetic foot, and other types of skin injuries. Synoeca-MP is an antimicrobial peptide (AMP) that exhibits activity against several bacteria of clinical importance, but its cytotoxicity can represent a problem for its positioning as an effective antimicrobial compound. In contrast, the immunomodulatory peptide IDR-1018 presents low toxicity and a wide regenerative potential due to its ability to reduce apoptotic mRNA expression and promote skin cell proliferation. In the present study, we used human skin cells and a 3D skin equivalent models to analyze the potential of the IDR-1018 peptide to attenuate the cytotoxicity of synoeca-MP, as well as the influence of synoeca-MP/IDR-1018 combination on cell proliferation, regenerative processes, and wound repair. We found that the addition of IDR-1018 significantly improved the biological properties of synoeca-MP on skin cells without modifying its antibacterial activity against S. aureus. Likewise, in both melanocytes and keratinocytes, the treatment with synoeca-MP/IDR-1018 combination induces cell proliferation and migration, while in a 3D human skin equivalent model, it can accelerate wound reepithelization. Furthermore, treatment with this peptide combination generates an up-regulation in the expression of pro-regenerative genes in both monolayer cell cultures and in 3D skin equivalents. This data suggests that the synoeca-MP/IDR-1018 combination possesses a good profile of antimicrobial and pro-regenerative activity, opening the door to the development of new strategies for the treatment of skin lesions.


Asunto(s)
Péptidos Antimicrobianos , Staphylococcus aureus , Humanos , Técnicas de Cultivo de Célula , Proliferación Celular
8.
Polymers (Basel) ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242947

RESUMEN

The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.

9.
Environ Sci Pollut Res Int ; 30(27): 70771-70782, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37155092

RESUMEN

The increase in pathogen levels in seawater threatens the safety of entire aquatic ecosystems. Foodborne pathogens can potentially accumulate in shellfish, especially in filter feeders such as bivalves, requiring an efficient depuration process before consumption. Alternative approaches to promote a cost-efficient purge at depuration plants are urgently needed. A small prototype pulsed ultraviolet (PUV) light recirculation system was designed, and its depuration potential was tested in a seawater matrix artificially contaminated with high levels of microbial pathogens Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Bacillus cereus and Candida albicans. The analysis of treatment parameters including voltage, number of pulses and duration of treatment was performed to ensure the highest reduction in contaminant levels. Optimal PUV disinfection was attained at 60 pulses/min at 1 kV for 10 min (a UV output of 12.9 J/cm2). All reductions were statistically significant, and the greatest was observed for S. aureus (5.63 log10), followed by C. albicans (5.15 log10), S. typhimurium (5 log10), B. cereus (4.59 log10) and E. coli (4.55 log10). PUV treatment disrupted the pathogen DNA with the result that S. aureus, C. albicans and S. typhimurium were not detectable by PCR. Regulations were reviewed to address the applicability of PUV treatment as a promising alternative to assist in the reduction of microbial pathogens at depuration plants due to its high efficiency, short treatment period, high UV dose and recirculation system as currently employed in shellfish depuration plants.


Asunto(s)
Desinfección , Staphylococcus aureus , Escherichia coli , Ecosistema , Mariscos , Agua de Mar , Rayos Ultravioleta
10.
Acta Trop ; 242: 106899, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36935050

RESUMEN

Extracellular vesicle (EVs) traffic is considered an important cellular communication process between cells that can be part of a single organism or belong to different living beings. The relevance of EV-mediated cellular communication is increasingly studied and appreciated, especially in relation to pathological conditions, including parasitic disorders, in which the EV release and uptake processes have been documented. In the context of Chagas Disease (CD), EVs have been explored, however, current data have not been systematically revised in order to provide an overview of the published literature and the main results obtained thus far. In this systematic review, 25 studies involving the investigation of EVs in CD were identified. The studies involved Trypanosoma cruzi -derived EVs (Tc-EVs), as well as EVs derived from T. cruzi-infected mammalian cells, mainly isolated by ultracentrifugation and poorly characterized. The objectives of the identified studies included the characterization of the protein and RNA cargo of Tc-EVs, as well as investigation of EVs in parasitic infections and immune-related processes. Overall, our systematic review reveals that EVs play critical roles in several mechanisms related to the interaction between T. cruzi and mammalian hosts, their contribution to immune system evasion by the parasite, and to chronic inflammation in the host. Future studies will benefit from the consolidation of isolation and characterization methods, as well as the elucidation of the role of EVs in CD.


Asunto(s)
Enfermedad de Chagas , Vesículas Extracelulares , Trypanosoma cruzi , Animales , Humanos , Enfermedad de Chagas/parasitología , Proteínas/metabolismo , Vesículas Extracelulares/metabolismo , Transporte Biológico , Mamíferos
11.
Biochem Biophys Rep ; 32: 101357, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36213144

RESUMEN

Aims: Osteosarcoma (OS) is the most common primary malignant bone sarcoma among children and adolescents. Treatment is based on neo-adjuvant and adjuvant chemotherapy, using the standard drugs cisplatin, methotrexate, doxorubicin, and ifosfamide (IFO). Due to the high capacity of tumor resistance, the current work aimed to analyze genes related to cycle control and cell differentiation in OS cells sensitive to and with induced resistance to IFO. This was to assess whether the differentiated expression of these genes may affect resistance to the drug IFO used in OS treatment, and thus establish possible biomarkers of disease progression. Materials and methods: In this work, the treatment-sensitive OS U2OS lineage was used, and the same lineage was submitted to the process of induction of IFO resistance. These cells were evaluated by MTT, migration and proliferation assays and submitted to gene expression analysis. Key findings: The results demonstrate that after induction of resistance to IFO, resistant U2OS cells show a more aggressive tumor behavior, with greater capacity for cell migration, proliferation, and invasion compared to sensitive cells. Gene analysis indicates that resistance-induced cells have differentiated expression of the genes EPB41L3, GADD45A, IER3, OXCT1, UBE2L6, UBE2A ALPL, and EFNB2. Our results suggest new perspectives on possible resistance biomarkers, especially the genes EFNB2 and EPB41L3, given that these genes have rarely been studied their expression linked to osteosarcoma. They show how the resistance induction model can be useful for studies on tumor cell behavior.

12.
Sci Total Environ ; 851(Pt 2): 158392, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055498

RESUMEN

Development of integrated multi-trophic aquaculture (IMTA) systems constitutes a step change in the sustainable production of freshwater fish to meet emerging needs for high-protein foods globally. Recently, there has been a paradigm shift away from harvesting peat as a fuel towards the development of wettable peatland innovation (termed 'paludiculture'), such as aquaculture. Such eco-innovations support carbon sequestration and align with a balanced environmental approach to protecting biodiversity. This novel peatland-based IMTA process in the Irish midlands relies upon natural microalgae for waste treatment, recirculation and water quality where there is no use of pesticides or antibiotics. This novel IMTA system is powered with a wind turbine and the process has 'organic status'; moreover, it does not discharge aquaculture effluent to receiving water. However, there is a significant lack of understanding as to diversity of microalgae in this 'paludiculture'-based IMTA processes. This constitutes the first case study to use conventional microscopy combined with next-generation sequencing and bioinformatics to profile microalgae occurring in this novel IMTA system from pooled samples over a 12 month period in 2020. Conventional microscopy combined with classic identification revealed twenty genera of algae; with Chlorophyta and Charophyta being the most common present. However, algal DNA isolation, 16 s sequencing and bioinformatics revealed a combined total of 982 species from 341 genera across nine phyla from the same IMTA system, which emphasized a significant underestimation in the number and diversity of beneficial or potentially harmful algae in the IMTA-microbiome. These new methods also yield rich data that can be used by digital technologies to transform future monitoring and performance of the IMTA system for sustainability. The findings of this study align with many sustainability development goals of the United Nations including no poverty, zero hunger, good health and well-being, responsible consumption and production, climate change, and life below water.


Asunto(s)
Microalgas , Plaguicidas , Animales , Microalgas/genética , Eucariontes , Secuenciación de Nucleótidos de Alto Rendimiento , Biología Computacional , ADN de Algas , Irlanda , Acuicultura/métodos , Agua Dulce , Suelo , Antibacterianos
13.
Sci Total Environ ; 844: 157067, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35780875

RESUMEN

Shellfish are a rich source of minerals, B-vitamins and omega-3 to the human diet. The global population is expected to reach 9.6 billion people by 2050 where there will be increased demand for shellfish and for sustained improvements in harvesting. The production of most consumed species of shellfish is sea-based and are thus susceptible to in situ environmental conditions and water quality. Population growth has contributed to expansion of urbanization and the generation of effluent and waste that reaches aquatic environments, potentially contaminating seafood by exposure to non-treated effluents or inappropriately discarded waste. Environmental contaminants as microplastics (MP), pharmaceuticals (PHAR) and potentially toxic contaminants (PTE) are being identified in all trophic levels and are a current threat to both shellfish and consumer safety. Immunotoxicity, genotoxicity, fertility reduction, mortality and bioaccumulation of PTE are representative examples of the variety of effects already established in contaminated shellfish. In humans, the consumption of contaminated shellfish can lead to neurological and developmental effects, reproductive and gastrointestinal disorders and in extreme cases, death. This timely review provides insights into the presence of MP, PHAR and PTE in shellfish, and estimate the daily intake and hazard quotient for consumption behaviours. Alternatives approaches for seafood depuration that encompass risk reduction are addressed, to reflect state of the art knowledge from a Republic of Ireland perspective. Review of best-published literature revealed that MP, PHAR and PTE contaminants were detected in commercialised species of shellfish, such as Crassostrea and Mytilus. The ability to accumulate these contaminants by shellfish due to feeding characteristics is attested by extensive in vitro studies. However, there is lack of knowledge surrounding the distribution of these contaminants in the aquatic environment their interactions with humans. Preventive approaches including risk assessment are necessary to safeguard the shellfish industry and the consumer.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Animales , Contaminación de Alimentos/análisis , Humanos , Microplásticos , Preparaciones Farmacéuticas , Alimentos Marinos/análisis , Mariscos/análisis , Contaminantes Químicos del Agua/análisis
14.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344616

RESUMEN

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Asunto(s)
Anomalías Craneofaciales , Enanismo , Deformidades Congénitas de las Extremidades , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Anomalías Urogenitales , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Enanismo/diagnóstico , Enanismo/genética , Genes Recesivos , Humanos , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Masculino , Fenotipo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética
15.
Sci Total Environ ; 809: 152177, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34875322

RESUMEN

Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. ß-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of ß-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between ß-glucan content in extracts isolated from seven mushroom species. The extracts with the highest ß-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1ß insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of ß-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.


Asunto(s)
Agaricales , beta-Glucanos , Glucanos , Humanos , Leucocitos Mononucleares , Pulmón , Polisacáridos
16.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615967

RESUMEN

In the cellular environment, high noise levels, such as fluctuations in biochemical reactions, protein variability, molecular diffusion, cell-to-cell contact, and pH, can both mediate and interfere with cellular functions. In this work, gold edge-coated triangular silver nanoparticles (AuTSNP) were validated as a promising new tool to indicate protein conformational transitions in cultured cells and to monitor essential protein activity in the presence of an optimized bone biomimetic chitosan-based scaffold whose rational design mimics the ECM as a natural scaffold. A chitosan-based scaffold formulation with hydroxyapatite (CS/HAp) was selected due to its promising features for orthopedic applications, including combined high mechanical strength biocompatibility and biodegradability. Functionalized AuTSNP-based tests with the model ECM protein, fibronectin (Fn), illustrate that the protein interactions can be clearly sensed over time through the local surface plasmon resonance (LSPR) technique. This demonstrates that AuTNSP are a powerful tool to detect protein conformational activity in the presence of biomimetic bone tissue regeneration scaffolds within a cellular environment that comprises a diversity of molecular cues.

17.
Clin Ther ; 43(5): e103-e138, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892966

RESUMEN

PURPOSE: The field of human medicine is in a constant state of evolution, developing and incorporating technological advances from diverse scientific fields. In recent years, cellular and gene therapies have come of age, challenging regulatory agencies to define the path for commercial registration. Approval necessarily demands robust evidence for safety and efficacy, but these exigencies must not be such that they render unviable the development and testing of the therapeutic agent. Furthermore, reimbursement strategies are required to guarantee commercial viability of these products, to avoid the risk that they will be removed from the market or become unavailable to most patients through lack of financial resources. To address such challenges, several countries have created strategies to manage advanced therapy products. METHODS: Based on official documents published by regulatory agencies worldwide, this review summarizes the current scenario in the United States, Europe, Brazil, Japan, South Korea, and China in this regard, discussing the harmonized and dissonant aspects of the regulatory framework in different regions of the world and exploring perspectives for the future. FINDINGS: The technical aspects of advanced therapies are increasingly complex, bringing challenges for high mass commercialization and demanding specific regulation. The regulatory framework of the analyzed regions is mainly recent and discordant, but many harmonizing initiatives were observed. IMPLICATIONS: The comparative analysis of regulatory frameworks in different parts of the world is informative, as scientists must be aware of the rationale of regulators to assertively develop new technology and products that will be commercialized. The comparative analysis also provides insight into the main dissonances that must be addressed, fostering the harmonization of local regulatory frameworks. Many unanswered questions still lie ahead for the field of advanced therapies, and empirical evidence will be the most effective way to separate hype from hope and to establish the most sustainable mechanisms to regulate and finance such products in each part of the world.


Asunto(s)
Terapia Genética , Agencias Gubernamentales , China , Europa (Continente) , Predicción , Humanos , Estados Unidos
18.
Cytokine Growth Factor Rev ; 59: 9-21, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33551332

RESUMEN

Aging is a natural physiological process that features various and variable challenges, associated with loss of homeostasis within the organism, often leading to negative consequences for health. Cellular senescence occurs when cells exhaust the capacity to renew themselves and their tissue environment as the cell cycle comes to a halt. This process is influenced by genetics, metabolism and extrinsic factors. Immunosenescence, the aging of the immune system, is a result of the aging process, but can also in turn act as a secondary inducer of senescence within other tissues. This review aims to summarize the current state of knowledge regarding hallmarks of aging in relation to immunosenescence, with a focus on aging-related imbalances in the medullary environment, as well as the components of the innate and adaptive immune responses. Aging within the immune system alters its functionality, and has consequences for the person's ability to fight infections, as well as for susceptibility to chronic diseases such as cancer and cardiovascular disease. The senescence-associated secretory phenotype is described, as well as the involvement of this phenomenon in the paracrine induction of senescence in otherwise healthy cells. Inflammaging is discussed in detail, along with the comorbidities associated with this process. A knowledge of these processes is required in order to consider possible targets for the application of senotherapeutic agents - interventions with the potential to modulate the senescence process, thus prolonging the healthy lifespan of the immune system and minimizing the secondary effects of immunosenescence.


Asunto(s)
Inmunosenescencia , Envejecimiento , Senescencia Celular , Enfermedad Crónica , Humanos , Sistema Inmunológico , Inflamación
19.
Pharmaceutics ; 12(12)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291349

RESUMEN

This study was performed to develop an adjuvant therapy in the form of a self-administered vaginal tablet regimen for the localized delivery of chemotherapeutic drugs. This therapy will help to reduce relapse by eradicating cancerous cells in the margin of cervical tumors. The vaginal tablet is a very common formulation that is easy to manufacture, easy to place in the vagina, and has a low cost of manufacture, making them ideal for use in developing countries. A combination of disulfiram and 5-fluorouracil, which are both off-patent drugs and provide different modes of action, were evaluated. The tablets developed were evaluated for weight variation, thickness, hardness, friability, swelling index, differential scanning calorimetry (DSC), particle morphology, in vitro drug release, and cytotoxicity on Ca-Ski cells. Both layers were designed to release both drugs concurrently for a synergistic effect. The polymer-polymer interaction between the layers was able to reduce the loss of formulation due to chitosan. While the bilayer tablet had satisfactory performance in the physicochemical tests, in vitro cell culture with Ca-Ski also showed a synergistic effect using a combination of drugs at a low dose. However, the formulation only had 24-h dose release before degradation. Further drug combinations should be evaluated in subsequent studies.

20.
Sci Rep ; 10(1): 8018, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415089

RESUMEN

Valuable female cattle are continuously subject to follicular puncture (ovum pick-up - OPU). This technique is commonly used for in-vitro embryo production, but may result in ovarian lesion. Mesenchymal stem cells (MSC) ameliorate the function of injured tissues, but their use to treat ovarian lesions in cattle has not been established. We investigated whether a local injection of MSC would reduce the negative effects of repeated OPU under acute and chronic scenarios in bovines. First, we performed four OPU sessions and injected 2.5 × 106 MSCs immediately after the 4th OPU procedure (n = 5). The treated organs (right ovary) were compared to their saline-treated counterparts (left), and presented superior production of oocytes and embryos in the three following OPU sessions (P < 0.05). Then, cows with progressive fertility loss went through three OPU sessions. Animals received MSC, saline, or MSC + FSH in both ovaries after the first OPU. In the two following OPU sessions, the MSC and MSC + FSH - treated groups failed to present any significant alteration in the number of oocytes and embryos compared to saline-treated animals. Thus, MSC have beneficial effects on the fertility of OPU-lesioned cows, but not in cows with cystic ovarian disease and chronic ovarian lesions.


Asunto(s)
Desarrollo Embrionario , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Oocitos/fisiología , Ovario/citología , Ovario/fisiología , Animales , Biomarcadores , Blastocisto/citología , Bovinos , Diferenciación Celular , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Femenino , Fertilización In Vitro , Perfilación de la Expresión Génica , Infertilidad Femenina/etiología , Infertilidad Femenina/terapia , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA