Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7990): 48-49, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030759
2.
Nat Commun ; 14(1): 6098, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816739

RESUMEN

Global cooling has been proposed as a driver of the Great Ordovician Biodiversification Event, the largest radiation of Phanerozoic marine animal Life. Yet, mechanistic understanding of the underlying pathways is lacking and other possible causes are debated. Here we couple a global climate model with a macroecological model to reconstruct global biodiversity patterns during the Ordovician. In our simulations, an inverted latitudinal biodiversity gradient characterizes the late Cambrian and Early Ordovician when climate was much warmer than today. During the Mid-Late Ordovician, climate cooling simultaneously permits the development of a modern latitudinal biodiversity gradient and an increase in global biodiversity. This increase is a consequence of the ecophysiological limitations to marine Life and is robust to uncertainties in both proxy-derived temperature reconstructions and organism physiology. First-order model-data agreement suggests that the most conspicuous rise in biodiversity over Earth's history - the Great Ordovician Biodiversification Event - was primarily driven by global cooling.


Asunto(s)
Biodiversidad , Clima , Animales , Temperatura , Frío , Fósiles
3.
Sci Adv ; 9(35): eadg7679, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647393

RESUMEN

The geological record of marine animal biodiversity reflects the interplay between changing rates of speciation versus extinction. Compared to mass extinctions, background extinctions have received little attention. To disentangle the different contributions of global climate state, continental configuration, and atmospheric oxygen concentration (pO2) to variations in background extinction rates, we drive an animal physiological model with the environmental outputs from an Earth system model across intervals spanning the past 541 million years. We find that climate and continental configuration combined to make extinction susceptibility an order of magnitude higher during the Early Paleozoic than during the rest of the Phanerozoic, consistent with extinction rates derived from paleontological databases. The high extinction susceptibility arises in the model from the limited geographical range of marine organisms. It stands even when assuming present-day pO2, suggesting that increasing oxygenation through the Paleozoic is not necessary to explain why extinction rates apparently declined with time.


Asunto(s)
Biodiversidad , Clima , Animales , Bases de Datos Factuales , Planeta Tierra , Extinción Biológica
4.
Nature ; 608(7923): 523-527, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978129

RESUMEN

The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O2]) in the ocean1-3. In turn, [O2] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO2)4,5. Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O2]. We further identify the presence of state transitions in the global ocean circulation, which lead to extensive deep-ocean anoxia developing in the early Phanerozoic even under modern pO2. Our finding that ocean oxygenation oscillates over stable thousand-year (kyr) periods also provides a causal mechanism that might explain elevated rates of metazoan radiation and extinction during the early Palaeozoic Era6. The absence, in our modelling, of any simple correlation between global climate and ocean ventilation, and the occurrence of profound variations in ocean oxygenation independent of atmospheric pO2, presents a challenge to the interpretation of marine redox proxies, but also points to a hitherto unrecognized role for continental configuration in the evolution of the biosphere.


Asunto(s)
Océanos y Mares , Oxígeno , Animales , Evolución Biológica , Biota , Planeta Tierra , Extinción Biológica , Historia Antigua , Oxígeno/análisis , Oxígeno/metabolismo , Factores de Tiempo , Movimientos del Agua
5.
Data Brief ; 43: 108424, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35845094

RESUMEN

This article describes a suite of global climate model output files that provide continental climatic conditions (monthly temperatures, precipitation, evaporation, precipitation minus evaporation balance, runoff) together with the calculated Köppen-Geiger climate classes and topography, for 28 evenly spaced time slices through the Phanerozoic (Cambrian to Quaternary, 540 Ma to 0 Ma). Climatic variables were simulated with the Fast Ocean Atmosphere Model (FOAM), using a recent set of open-access continental reconstructions with paleotopography and recent atmospheric CO2 and solar luminosity estimates. FOAM is a general circulation model frequently used in paleoclimate studies, especially in the Palaeozoic. Köppen-Geiger climate classes were calculated based on simulated temperature and precipitation fields using Wong Hearing et al.'s [1] implementation of Peel et al.'s [2] updated classification. This dataset provides a unique window onto changing continental climate throughout the Phanerozoic that accounts for the simultaneous evolution of paleogeography (continental configuration and topography), atmospheric composition and greenhouse gas forcing, and solar luminosity.

6.
Nature ; 607(7919): 507-511, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831505

RESUMEN

The fossil record of marine invertebrates has long fuelled the debate as to whether or not there are limits to global diversity in the sea1-5. Ecological theory states that, as diversity grows and ecological niches are filled, the strengthening of biological interactions imposes limits on diversity6,7. However, the extent to which biological interactions have constrained the growth of diversity over evolutionary time remains an open question1-5,8-11. Here we present a regional diversification model that reproduces the main Phanerozoic eon trends in the global diversity of marine invertebrates after imposing mass extinctions. We find that the dynamics of global diversity are best described by a diversification model that operates widely within the exponential growth regime of a logistic function. A spatially resolved analysis of the ratio of diversity to carrying capacity reveals that less than 2% of the global flooded continental area throughout the Phanerozoic exhibits diversity levels approaching ecological saturation. We attribute the overall increase in global diversity during the Late Mesozoic and Cenozoic eras to the development of diversity hotspots under prolonged conditions of Earth system stability and maximum continental fragmentation. We call this the 'diversity hotspots hypothesis', which we propose as a non-mutually exclusive alternative to the hypothesis that the Mesozoic marine revolution led this macroevolutionary trend12,13.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Extinción Biológica , Fósiles , Modelos Biológicos , Océanos y Mares , Animales , Evolución Biológica , Ecología , Historia Antigua , Invertebrados , Modelos Logísticos
7.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607946

RESUMEN

The decline in background extinction rates of marine animals through geologic time is an established but unexplained feature of the Phanerozoic fossil record. There is also growing consensus that the ocean and atmosphere did not become oxygenated to near-modern levels until the mid-Paleozoic, coinciding with the onset of generally lower extinction rates. Physiological theory provides us with a possible causal link between these two observations-predicting that the synergistic impacts of oxygen and temperature on aerobic respiration would have made marine animals more vulnerable to ocean warming events during periods of limited surface oxygenation. Here, we evaluate the hypothesis that changes in surface oxygenation exerted a first-order control on extinction rates through the Phanerozoic using a combined Earth system and ecophysiological modeling approach. We find that although continental configuration, the efficiency of the biological carbon pump in the ocean, and initial climate state all impact the magnitude of modeled biodiversity loss across simulated warming events, atmospheric oxygen is the dominant predictor of extinction vulnerability, with metabolic habitat viability and global ecophysiotype extinction exhibiting inflection points around 40% of present atmospheric oxygen. Given this is the broad upper limit for estimates of early Paleozoic oxygen levels, our results are consistent with the relative frequency of high-magnitude extinction events (particularly those not included in the canonical big five mass extinctions) early in the Phanerozoic being a direct consequence of limited early Paleozoic oxygenation and temperature-dependent hypoxia responses.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Atmósfera/química , Extinción Biológica , Calor , Oxígeno/análisis , Animales , Biodiversidad , Evolución Biológica , Ciclo del Carbono/fisiología , Clima , Planeta Tierra , Ecosistema , Fósiles , Océanos y Mares , Agua de Mar/química
8.
Nat Commun ; 12(1): 3868, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162853

RESUMEN

Marine ecosystems with a diverse range of animal groups became established during the early Cambrian (~541 to ~509 Ma). However, Earth's environmental parameters and palaeogeography in this interval of major macro-evolutionary change remain poorly constrained. Here, we test contrasting hypotheses of continental configuration and climate that have profound implications for interpreting Cambrian environmental proxies. We integrate general circulation models and geological observations to test three variants of the 'Antarctocentric' paradigm, with a southern polar continent, and an 'equatorial' configuration that lacks polar continents. This quantitative framework can be applied to other deep-time intervals when environmental proxy data are scarce. Our results show that the Antarctocentric palaeogeographic paradigm can reconcile geological data and simulated Cambrian climate. Our analyses indicate a greenhouse climate during the Cambrian animal radiation, with mean annual sea-surface temperatures between ~9 °C to ~19 °C and ~30 °C to ~38 °C for polar and tropical palaeolatitudes, respectively.

9.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827811

RESUMEN

The latitudinal diversity gradient (LDG)-the decline in species richness from the equator to the poles-is classically considered as the most pervasive macroecological pattern on Earth, but the timing of its establishment, its ubiquity in the geological past, and explanatory mechanisms remain uncertain. By combining empirical and modeling approaches, we show that the first representatives of marine phytoplankton exhibited an LDG from the beginning of the Cambrian, when most major phyla appeared. However, this LDG showed a single peak of diversity centered on the Southern Hemisphere, in contrast to the equatorial peak classically observed for most modern taxa. We find that this LDG most likely corresponds to a truncated bimodal gradient, which probably results from an uneven sediment preservation, smaller sampling effort, and/or lower initial diversity in the Northern Hemisphere. Variation of the documented LDG through time resulted primarily from fluctuations in annual sea-surface temperature and long-term climate changes.

10.
Sci Rep ; 9(1): 16432, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712563

RESUMEN

Prediction of carbonate distributions at a global scale through geological time represents a challenging scientific issue, which is critical for carbonate reservoir studies and the understanding of past and future climate changes. Such prediction is even more challenging because no numerical spatial model allows for the prediction of shallow-water marine carbonates in the Modern. This study proposes to fill this gap by providing for the first time a global quantitative model based on the identification of carbonate factories and associated environmental affinities. The relationships among the four carbonate factories, i.e., "biochemical", "photozoan-T", "photo-C" and "heterozoan-C" factories, and sea-surface oceanographic parameters (i.e., temperature, salinity and marine primary productivity) is first studied using spatial analysis. The sea-surface temperature seasonality is shown to be the dominant steering parameter discriminating the carbonate factories. Then, spatial analysis is used to calibrate different carbonate factory functions that predict oceanic zones favorable to specific carbonate factories. Our model allows the mapping of the global distribution of modern carbonate factories with an 82% accuracy. This modeling framework represents a powerful tool that can be adapted and coupled to general circulation models to predict the spatial distribution of past and future shallow-water marine carbonates.

11.
Sci Adv ; 4(5): eaar5690, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750198

RESUMEN

The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures-a key component of the early Cambrian marine environment-remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (δ18O) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust δ18O signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S) between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Mesozoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental controls on Cambrian animal diversification.


Asunto(s)
Clima , Efecto Invernadero , Biodiversidad , Ecosistema , Fósiles , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Historia Antigua , Océanos y Mares , Isótopos de Oxígeno/análisis , Paleontología , Temperatura
12.
Opt Express ; 23(20): 25972-8, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480112

RESUMEN

Acousto-optic modulation of a 1 cm fiber Bragg grating at 10.9 MHz frequency and 1065 nm wavelength is demonstrated for the first time. A special modulator design is employed to acoustically induce a dynamic radial long period grating which couples power of the fundamental mode to the higher-order modes supported by the Bragg grating. A modulated reflection band with a depth of 16 dB and 320 pm bandwidth has been achieved. The results indicate a higher modulation frequency compared to previous studies using flexural acoustic waves. In addition, the reduction of the grating length and the modulator size points to compact and faster acousto-optic modulators.

13.
Opt Express ; 21(6): 6997-7007, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23546082

RESUMEN

The interaction frequencies between longitudinal acoustic waves and fiber Bragg grating are numerically and experimentally assessed. Since the grating modulation depends on the acoustic drive, the combined analysis provides a more efficient operation. In this paper, 3-D finite element and transfer matrix methods allow investigating the electrical, mechanical and optical resonances of an acousto-optical device. The frequency response allows locating the resonances and characterizing their mechanical displacements. Measurements of the grating response under resonant excitation are compared to simulated results. A smaller than <1.5% average difference between simulated-measured resonances indicates that the method is useful for the design and characterization of optical modulators.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Luz , Modelos Teóricos , Refractometría/instrumentación , Sonido , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...