Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 100(2): 349-363, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930412

RESUMEN

Enterohaemorrhagic E. coli cause major epidemics worldwide with significant organ damage and very high percentages of death. Due to the ability of enterohaemorrhagic E. coli to produce shiga toxin these bacteria damage the kidney leading to the hemolytic uremic syndrome. A therapy against this serious kidney disease has not been developed yet and the impact and mechanism of leukocyte activation and recruitment are unclear. Tissue-resident macrophages represent the main leukocyte population in the healthy kidney, but the role of this important cell population in shiga toxin-producing E. coli-hemolytic uremic syndrome is incompletely understood. Using state of the art microscopy and mass spectrometry imaging, our preclinical study demonstrated a phenotypic and functional switch of tissue-resident macrophages after disease induction in mice. Kidney macrophages produced the inflammatory molecule TNFα and depletion of tissue-resident macrophages via the CSF1 receptor abolished TNFα levels in the kidney and significantly diminished disease severity. Furthermore, macrophage depletion did not only attenuate endothelial damage and thrombocytopenia, but also activation of thrombocytes and neutrophils. Moreover, we observed that neutrophils infiltrated the kidney cortex and depletion of macrophages significantly reduced the recruitment of neutrophils and expression of the neutrophil-attracting chemokines CXCL1 and CXCL2. Intravital microscopy revealed that inhibition of CXCR2, the receptor for CXCL1 and CXCL2, significantly reduced the infiltration of neutrophils and reduced kidney injury. Thus, our study shows activation of tissue-resident macrophages during shiga toxin-producing E. coli-hemolytic uremic syndrome leading to the production of disease-promoting TNFα and CXCR2-dependent recruitment of neutrophils.


Asunto(s)
Síndrome Hemolítico-Urémico , Toxina Shiga , Animales , Escherichia coli , Riñón , Macrófagos , Ratones , Infiltración Neutrófila
2.
Eur J Immunol ; 48(6): 990-1000, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29446073

RESUMEN

The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1high monocyte infiltration into the kidney. Indeed, the number of Gr1high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1high monocytes. Lack of Gr1high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/fisiología , Síndrome Hemolítico-Urémico/inmunología , Riñón/patología , Monocitos/inmunología , Receptores CCR2/metabolismo , Animales , Antígenos Ly/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Humanos , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores CCR2/genética , Receptores CXCR3/genética , Toxina Shiga II/administración & dosificación
3.
Gut ; 66(12): 2110-2120, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28615301

RESUMEN

OBJECTIVE: Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. DESIGN: POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. RESULTS: We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C- macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. CONCLUSIONS: Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI.


Asunto(s)
Células Dendríticas/citología , Microbioma Gastrointestinal , Ileus/inmunología , Ileus/microbiología , Activación de Macrófagos , Monocitos/inmunología , Peristaltismo/inmunología , Complicaciones Posoperatorias/inmunología , Complicaciones Posoperatorias/microbiología , Animales , Antígenos CD/inmunología , Antígeno CD11b/inmunología , Modelos Animales de Enfermedad , Tránsito Gastrointestinal , Ileus/fisiopatología , Cadenas alfa de Integrinas/inmunología , Ratones , Ratones Transgénicos , Complicaciones Posoperatorias/fisiopatología
4.
Cell ; 156(3): 456-68, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485454

RESUMEN

The phagocytes of the innate immune system, macrophages and neutrophils, contribute to antibacterial defense, but their functional specialization and cooperation is unclear. Here, we report that three distinct phagocyte subsets play highly coordinated roles in bacterial urinary tract infection. Ly6C(-) macrophages acted as tissue-resident sentinels that attracted circulating neutrophils and Ly6C(+) macrophages. Such Ly6C(+) macrophages played a previously undescribed helper role: once recruited to the site of infection, they produced the cytokine TNF, which caused Ly6C(-) macrophages to secrete CXCL2. This chemokine activated matrix metalloproteinase-9 in neutrophils, allowing their entry into the uroepithelium to combat the bacteria. In summary, the sentinel macrophages elicit the powerful antibacterial functions of neutrophils only after confirmation by the helper macrophages, reminiscent of the licensing role of helper T cells in antiviral adaptive immunity. These findings identify helper macrophages and TNF as critical regulators in innate immunity against bacterial infections in epithelia.


Asunto(s)
Infecciones Bacterianas/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Infecciones Urinarias/inmunología , Animales , Antígenos Ly/metabolismo , Quimiocina CXCL2/inmunología , Femenino , Enfermedades del Sistema Inmune , Cinética , Trastornos Leucocíticos , Macrófagos/citología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Neutrófilos/citología , Organismos Libres de Patógenos Específicos , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...