Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 206(6): e0008924, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38819156

RESUMEN

Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. In trans expression of arlI and arlJ mutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlI and ∆pilA[1-6]∆arlJ confirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA expression in trans in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirA cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals three Haloferax volcanii proteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.


Asunto(s)
Proteínas Arqueales , Proteínas Fimbrias , Regulación de la Expresión Génica Arqueal , Haloferax volcanii , Haloferax volcanii/genética , Haloferax volcanii/fisiología , Haloferax volcanii/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología
2.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562816

RESUMEN

Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established, however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used EMS mutagenesis and a motility assay to identify motile suppressors of the ΔpilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. Overexpression of these arlI and arlJ mutant constructs in the respective multi-deletion strains ΔpilA[1-6]ΔarlI and ΔpilA[1-6]ΔarlJ confirmed their role in suppressing the ΔpilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA overexpression in wild-type cells led to decreased motility. Moreover, qRT-PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ΔcirA cells, which form rods during both early and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.

4.
Curr Opin Microbiol ; 14(3): 357-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21482178

RESUMEN

In both bacteria and Archaea, the biosynthesis of type IV pilus-related structures involves a set of core components, including a prepilin peptidase that specifically processes precursors of pilin-like proteins. Although in silico analyses showed that most sequenced archaeal genomes encode predicted pilins and conserved pilus biosynthesis components, recent in vivo analyses of archaeal pili in genetically tractable crenarchaea and euryarchaea revealed Archaea-specific type IV pilus functions and biosynthesis components. Studies in a variety of archaeal species will reveal which type IV pilus-like structures are common in Archaea and which are limited to certain species within this domain. The insights gleaned from these studies may also elucidate the roles played by these types of structures in adapting to specific environments.


Asunto(s)
Archaea/citología , Archaea/fisiología , Sustancias Macromoleculares/metabolismo , Orgánulos/fisiología , Archaea/genética , Archaea/metabolismo , Evolución Molecular , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/fisiología , Orgánulos/genética , Orgánulos/metabolismo
5.
PLoS One ; 5(3): e9605, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20333302

RESUMEN

BACKGROUND: Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general. METHODOLOGY/PRINCIPAL FINDINGS: We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively) and the pHV2 plasmid (6.4 kb). CONCLUSIONS/SIGNIFICANCE: The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.


Asunto(s)
Archaea/genética , Genoma Arqueal , Haloferax volcanii/genética , Aminoácidos/química , Mapeo Cromosómico , Codón , Biología Computacional/métodos , Biblioteca de Genes , Genoma , Punto Isoeléctrico , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Transducción de Señal
6.
Extremophiles ; 13(3): 403-10, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19347566

RESUMEN

Bacterial type IV pili perform important functions in such disparate biological processes as surface adhesion, cell-cell interactions, autoaggregation, conjugation, and twitching motility. Unlike bacteria, archaea use a type IV pilus related structure to drive swimming motility. While this unique flagellum is the best-studied example of an archaeal IV pilus-like structure, recent in silico, in vivo and structural analyses have revealed a highly diverse set of archaeal non-flagellar type IV pilus-like structures. Accumulating evidence suggests that these structures play important diverse roles in archaea.


Asunto(s)
Archaea , Proteínas Fimbrias/clasificación , Proteínas Fimbrias/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...