Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Microbiome ; 19(1): 29, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706006

RESUMEN

BACKGROUND: Hot spring biofilms provide a window into the survival strategies of microbial communities in extreme environments and offer potential for biotechnological applications. This study focused on green and brown biofilms thriving on submerged plant litter within the Sungai Klah hot spring in Malaysia, characterised by temperatures of 58-74 °C. Using Illumina shotgun metagenomics and Nanopore ligation sequencing, we investigated the microbial diversity and functional potential of metagenome-assembled genomes (MAGs) with specific focus on biofilm formation, heat stress response, and carbohydrate catabolism. RESULTS: Leveraging the power of both Illumina short-reads and Nanopore long-reads, we employed an Illumina-Nanopore hybrid assembly approach to construct MAGs with enhanced quality. The dereplication process, facilitated by the dRep tool, validated the efficiency of the hybrid assembly, yielding MAGs that reflected the intricate microbial diversity of these extreme ecosystems. The comprehensive analysis of these MAGs uncovered intriguing insights into the survival strategies of thermophilic taxa in the hot spring biofilms. Moreover, we examined the plant litter degradation potential within the biofilms, shedding light on the participation of diverse microbial taxa in the breakdown of starch, cellulose, and hemicellulose. We highlight that Chloroflexota and Armatimonadota MAGs exhibited a wide array of glycosyl hydrolases targeting various carbohydrate substrates, underscoring their metabolic versatility in utilisation of carbohydrates at elevated temperatures. CONCLUSIONS: This study advances understanding of microbial ecology on plant litter under elevated temperature by revealing the functional adaptation of MAGs from hot spring biofilms. In addition, our findings highlight potential for biotechnology application through identification of thermophilic lignocellulose-degrading enzymes. By demonstrating the efficiency of hybrid assembly utilising Illumina-Nanopore reads, we highlight the value of combining multiple sequencing methods for a more thorough exploration of complex microbial communities.

2.
Front Microbiol ; 14: 1199187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577436

RESUMEN

Herbivorous insects require an active lignocellulolytic microbiome to process their diet. Stick insects (phasmids) are common in the tropics and display a cosmopolitan host plant feeding preference. The microbiomes of social insects are vertically transmitted to offspring, while for solitary species, such as phasmids, it has been assumed that microbiomes are acquired from their diet. This study reports the characterization of the gut microbiome for the Gray's Malayan stick insect, Lonchodes brevipes, reared on native and introduced species of host plants and compared to the microbiome of the host plant and surrounding soil to gain insight into possible sources of recruitment. Clear differences in the gut microbiome occurred between insects fed on native and exotic plant diets, and the native diet displayed a more species-rich fungal microbiome. While the findings suggest that phasmids may be capable of adapting their gut microbiome to changing diets, it is uncertain whether this may lead to any change in dietary efficiency or organismal fitness. Further insight in this regard may assist conservation and management decision-making.

3.
Front Microbiol ; 14: 1189468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396374

RESUMEN

The Sembawang Hot Spring in Singapore lies at the foot of a major regional geological feature called the Bentong-Raub Suture Zone. Amid an extensively managed surface geothermal park, an undisturbed hot spring emerges with source water at 61°C, pH 6.8, and 1 mg/L dissolved sulfide. A small main pool at the source supported orange-green benthic flocs, whereas the outflow channel with gradually less extreme environmental stress supported extensive vivid green microbial mats. Microscopy revealed that cyanobacterial morphotypes were distinct in flocs and mats at several intervals along the environmental gradient, and we describe a spiraling pattern in the oscillatorian cyanobacteria that may reflect response to poly-extreme stress. Estimation of diversity using 16S rRNA gene sequencing revealed assemblages that were dominated by phototrophic bacteria. The most abundant taxa in flocs at 61°C/1 mg/L sulfide were Roseiflexus sp. and Thermosynechococcus elongatus, whilst the mats at 45.7-55.3°C/0-0.5 mg/L sulfide were dominated by Oscillatoriales cyanobacterium MTP1 and Chloroflexus sp. Occurrence of diverse chemoautotrophs and heterotrophs reflected known thermal ranges for taxa, and of note was the high abundance of thermophilic cellulolytic bacteria that likely reflected the large allochthonous leaf input. A clear shift in ASV-defined putative ecotypes occurred along the environmental stress gradient of the hot spring and overall diversity was inversely correlated to environmental stress. Significant correlations for abiotic variables with observed biotic diversity were identified for temperature, sulfide, and carbonate. A network analysis revealed three putative modules of biotic interactions that also reflected the taxonomic composition at intervals along the environmental gradient. Overall, the data indicated that three distinct microbial communities were supported within a small spatial scale along the poly-extreme environmental gradient. The findings add to the growing inventory of hot spring microbiomes and address an important biogeographic knowledge gap for the region.

4.
Microorganisms ; 11(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37512843

RESUMEN

Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.

5.
Curr Opin Biotechnol ; 81: 102945, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087840

RESUMEN

The atmosphere is a major route for microbial intercontinental dispersal, including harmful microorganisms, antibiotic resistance genes, and allergens, with strong implications in ecosystem functioning and global health. Long-distance dispersal is facilitated by air movement at higher altitudes in the free troposphere and is affected by anthropogenic forcing, climate change, and by the general atmospheric circulation, mainly in the intertropical convergence zone. The survival of microorganisms during atmospheric transport and their remote invasive potential are fundamental questions, but data are scarce. Extreme atmospheric conditions represent a challenge to survival that requires specific adaptive strategies, and recovery of air samples from the high altitudes relevant to study harmful microorganisms can be challenging. In this paper, we highlight the scope of the problem, identify challenges and knowledge gaps, and offer a roadmap for improved understanding of intercontinental microbial dispersal and their outcomes. Greater understanding of long-distance dispersal requires research focus on local factors that affect emissions, coupled with conditions influencing transport and survival at high altitudes, and eventual deposition at sink locations.


Asunto(s)
Atmósfera , Ecosistema
6.
Sci Total Environ ; 871: 162137, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36775167

RESUMEN

The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.


Asunto(s)
Ecosistema , Microbiota , Suelo , Bacterias , Atmósfera , Temperatura , Microbiología del Suelo
7.
FEMS Microbiol Rev ; 46(4)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35137064

RESUMEN

The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.


Asunto(s)
Atmósfera , Microbiota , Atmósfera/química , Metagenómica
8.
Sci Total Environ ; 791: 148026, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119785

RESUMEN

The western Pacific Ocean is particularly affected by dust aerosols due to the transport of desert-natural sand and industrially derived particulate matter with aerodynamic diameter < 2.5 µm (PM2.5) from continental Asia. Both oligotrophic and nutrient-sufficient surface water occurs in this region and these are speculated to support different microbial community dynamics. Here, we report evidence from four shipboard experiments in the western Pacific Ocean supplying oligotrophic and nutrient-sufficient surface waters with aerosol particles obtained from the nearby coastal mountains, to simulate dust and anthropogenic aerosol inputs in the ocean region. A sharp increase in nitrate for surface waters after addition of dust aerosols resulted in large increases in diatom abundance in oligotrophic waters, whilst in nutrient-sufficient waters the response of diatom population was reduced. The increase in organic matter provided by aerosol inputs and/or increase in phytoplankton biomass induced the growth of heterotrophic prokaryotes, such as Rhodobacteraceae and Alteromonadaceae populations, in both oligotrophic and nutrient-sufficient seawater. Anthropogenic and desert-natural dust is an important source of nitrate and organics to oceanic waters and such inputs can directly affect primary production and heterotrophic prokaryotic abundance in the ocean, implying consequences for the carbon cycle in these aerosol-affected waters.


Asunto(s)
Polvo , Microbiota , Aerosoles/análisis , Polvo/análisis , Océano Pacífico , Material Particulado/análisis , Fitoplancton , Agua de Mar
9.
Vet Rec ; 187(11): 455, 2020 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-33247063
10.
Front Microbiol ; 11: 126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117148

RESUMEN

Glacier forefields provide a unique chronosequence to assess microbial or plant colonization and ecological succession on previously uncolonized substrates. Patterns of microbial succession in soils of alpine and subpolar glacier forefields are well documented but those affecting high polar systems, including moraine rocks, remain largely unexplored. In this study, we examine succession patterns in pioneering bacterial, fungal and algal communities developing on moraine rocks and soil at the Hurd Glacier forefield (Livingston Island, Antarctica). Over time, changes were produced in the microbial community structure of rocks and soils (ice-free for different lengths of time), which differed between both substrates across the entire chronosequence, especially for bacteria and fungi. In addition, fungal and bacterial communities showed more compositional consistency in soils than rocks, suggesting community assembly in each niche could be controlled by processes operating at different temporal and spatial scales. Microscopy revealed a patchy distribution of epilithic and endolithic lithobionts, and increasing endolithic colonization and microbial community complexity along the chronosequence. We conclude that, within relatively short time intervals, primary succession processes at polar latitudes involve significant and distinct changes in edaphic and lithic microbial communities associated with soil development and cryptogamic colonization.

11.
Nat Microbiol ; 5(5): 776, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32099094

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
ISME J ; 14(3): 871-876, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31754205

RESUMEN

The atmosphere is the least understood biome on Earth despite its critical role as a microbial transport medium. The influence of surface cover on composition of airborne microbial communities above marine systems is unclear. Here we report evidence for a dynamic microbial presence at the ocean-atmosphere interface of a major marine ecosystem, the Great Barrier Reef, and identify that recent air mass trajectory over an oceanic or continental surface associated with observed shifts in airborne bacterial and fungal diversity. Relative abundance of shared taxa between air and coral microbiomes varied between 2.2 and 8.8% and included those identified as part of the core coral microbiome. We propose that this variable source of atmospheric inputs may in part contribute to the diverse and transient nature of the coral microbiome.


Asunto(s)
Microbiología del Aire , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Microbiota , Agua de Mar/microbiología , Animales , Antozoos/microbiología , Atmósfera , Bacterias/clasificación , Bacterias/genética , Arrecifes de Coral , Ecosistema , Hongos/clasificación , Hongos/genética , Océanos y Mares
15.
Vet Rec ; 185(11): 348, 2019 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-31541057
16.
Front Microbiol ; 10: 69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873126

RESUMEN

Sediments in the hyper-arid core of the Atacama Desert are a terrestrial analog to Mars regolith. Understanding the distribution and drivers of microbial life in the sediment may give critical clues on how to search for biosignatures on Mars. Here, we identify the spatial distribution of highly specialized bacterial communities in previously unexplored depth horizons of subsurface sediments to a depth of 800 mm. We deployed an autonomous rover in a mission-relevant Martian drilling scenario with manual sample validation. Subsurface communities were delineated by depth related to sediment moisture. Geochemical analysis indicated soluble salts and minerology that influenced water bio-availability, particularly in deeper sediments. Colonization was also patchy and uncolonized sediment was associated with indicators of extreme osmotic challenge. The study identifies linkage between biocomplexity, moisture and geochemistry in Mars-like sediments at the limit of habitability and demonstrates feasibility of the rover-mounted drill for future Mars sample recovery.

17.
Nat Microbiol ; 4(6): 925-932, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30833723

RESUMEN

Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities1. Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes2,3, and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change4. One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance5. Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns.


Asunto(s)
Microbiología del Aire , Ecosistema , Microbiología del Suelo , Regiones Antárticas , Biodiversidad , Cambio Climático , Microbiota/genética , Filogenia , Análisis de Secuencia de ADN , Suelo
18.
Artículo en Inglés | MEDLINE | ID: mdl-30875989

RESUMEN

Aerosolized particulate matter (PM) is a complex mixture that has been recognized as the greatest cause of premature human mortality in low- and middle-income countries. Its toxicity arises largely from its chemical and biological components. These include polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (NPAHs) as well as microorganisms. In Africa, fossil fuel combustion and biomass burning in urban settings are the major sources of human exposure to PM, yet data on the role of aerosols in disease association in Africa remains scarce. This review is the first to examine studies conducted in Africa on both PAHs/NPAHs and airborne microorganisms associated with PM. These studies demonstrate that PM exposure in Africa exceeds World Health Organization (WHO) safety limits and carcinogenic PAHs/NPAHs and pathogenic microorganisms are the major components of PM aerosols. The health impacts of PAHs/NPAHs and airborne microbial loadings in PM are reviewed. This will be important for future epidemiological evaluations and may contribute to the development of effective management strategies to improve ambient air quality in the African continent.


Asunto(s)
Aerosoles/análisis , Microbiología del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , África , Biomasa , Ciudades , Combustibles Fósiles/análisis , Nitrocompuestos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
19.
Commun Biol ; 2: 62, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30793041

RESUMEN

Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km2. Using richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked measured variables in a parsimonious yet comprehensive structural equation model that explained significant variations in biological complexity and identified landscape-scale and fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of linkages among functional groups was essential for constructing the best-fitting model. Our findings support the notion that biotic interactions make crucial contributions even in an extremely simple ecosystem.


Asunto(s)
Artrópodos/fisiología , Cianobacterias/fisiología , Hongos/fisiología , Nematodos/fisiología , Rotíferos/fisiología , Tardigrada/fisiología , Animales , Regiones Antárticas , Artrópodos/clasificación , Biodiversidad , Cianobacterias/clasificación , Ecosistema , Hongos/clasificación , Modelos Estadísticos , Nematodos/clasificación , Rotíferos/clasificación , Tardigrada/clasificación
20.
Front Microbiol ; 9: 2619, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30450087

RESUMEN

Antarctic soil supports surface microbial communities that are dependent on ephemeral moisture. Understanding the response to availability of this resource is essential to predicting how the system will respond to climate change. The McMurdo Dry Valleys are the largest ice-free soil region in Antarctica. They are a hyper-arid polar desert with extremely limited moisture availability. Microbial colonization dominates this ecosystem but surprisingly little is known about how communities respond to changing moisture regimes. We utilized the natural model system provided by transiently wetted soil at lake margins in the Dry Valleys to interrogate microbial responses along a well-defined contiguous moisture gradient and disentangle responses between and within phyla. We identified a striking non-linear response among bacteria where at low moisture levels small changes resulted in a large impact on diversity. At higher moister levels community responses were less pronounced, resulting in diversity asymptotes. We postulate that whilst the main drivers of observed community diversity were deterministic, a switch in the major influence occurred from abiotic factors at low moisture levels to biotic interactions at higher moisture. Response between and within phyla was markedly different, highlighting the importance of taxonomic resolution in community analysis. Furthermore, we resolved apparent stochasticity at high taxonomic ranks as the result of deterministic interactions taking place at finer taxonomic and spatial scales. Overall the findings provide new insight on the response to moisture and this will be useful in advancing understanding of potential ecosystem responses in the threatened McMurdo Dry Valleys system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...