Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2322617121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771873

RESUMEN

Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.


Asunto(s)
Envejecimiento , Toma de Decisiones , Locus Coeruleus , Imagen por Resonancia Magnética , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/fisiología , Humanos , Toma de Decisiones/fisiología , Anciano , Masculino , Femenino , Envejecimiento/fisiología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Recompensa
2.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766113

RESUMEN

Importance: Positron emission tomography (PET) biomarkers are the gold standard for detection of Alzheimer amyloid and tau in vivo . Such imaging can identify cognitively unimpaired (CU) individuals who will subsequently develop cognitive impartment (CI). Plasma biomarkers would be more practical than PET or even cerebrospinal fluid (CSF) assays in clinical settings. Objective: Assess the prognostic accuracy of plasma p-tau217 in comparison to CSF and PET biomarkers for predicting the clinical progression from CU to CI. Design: In a cohort of elderly at high risk of developing Alzheimer's dementia (AD), we measured the proportion of CU individuals who developed CI, as predicted by Aß (A+) and/or tau (T+) biomarker assessment from plasma, CSF, and PET. Results from each method were compared with (A-T-) reference individuals. Data were analyzed from June 2023 to April 2024. Setting: Longitudinal observational cohort. Participants: Some 228 participants from the PREVENT-AD cohort were CU at the time of biomarker assessment and had 1 - 10 years of follow-up. Plasma was available from 215 participants, CSF from 159, and amyloid- and tau-PET from 155. Ninety-three participants had assessment using all three methods (main group of interest). Progression to CI was determined by clinical consensus among physicians and neuropsychologists who were blind to plasma, CSF, PET, and MRI findings, as well as APOE genotype. Exposures: Plasma Aß 42/40 was measured using IP-MS; CSF Aß 42/40 using Lumipulse; plasma and CSF p-tau217 using UGOT assay. Aß-PET employed the 18 F-NAV4694 ligand, and tau-PET used 18 F-flortaucipir. Main Outcome: Prognostic accuracy of plasma, CSF, and PET biomarkers for predicting the development of CI in CU individuals. Results: Cox proportional hazard models indicated a greater progression rate in all A+T+ groups compared to A-T-groups (HR = 6.61 [95% CI = 2.06 - 21.17] for plasma, 3.62 [1.49 - 8.81] for CSF and 9.24 [2.34 - 36.43] for PET). The A-T+ groups were small, but also characterized with individuals who developed CI. Plasma biomarkers identified about five times more T+ than PET. Conclusion and relevance: Plasma p-tau217 assessment is a practical method for identification of persons who will develop cognitive impairment up to 10 years later. Key Points: Question: Can plasma p-tau217 serve as a prognostic indicator for identifying cognitively unimpaired (CU) individuals at risk of developing cognitive impairments (CI)?Findings: In a longitudinal cohort of CU individuals with a family history of sporadic AD, almost all individuals with abnormal plasma p-tau217 concentrations developed CI within 10 years, regardless of plasma amyloid levels. Similar findings were obtained with CSF p-tau217 and tau-PET. Fluid p-tau217 biomarkers had the main advantage over PET of identifying five times more participants with elevated tau.Meaning: Elevated plasma p-tau217 levels in CU individuals strongly indicate future clinical progression.

3.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766183

RESUMEN

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower P-tau181 and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.

4.
Sleep ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634644

RESUMEN

STUDY OBJECTIVES: Apolipoprotein E ɛ4 (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD). In addition, APOE4 carriers may exhibit sleep disturbances, but conflicting results have been reported, such that there is no clear consensus regarding which aspects of sleep are impacted. Our objective was to compare objective sleep architecture between APOE4 carriers and non-carriers, and to investigate the modulating impact of age, sex, cognitive status and obstructive sleep apnea. METHODS: 198 dementia-free participants aged >55 years old (mean age: 68.7 ± 8.08 years old, 40.91% women, 41 APOE4 carriers) were recruited in this cross-sectional study. They underwent polysomnography, APOE4 genotyping and a neuropsychological evaluation. ANCOVAs assessed the effect of APOE4 status on sleep architecture, controlling for age, sex, cognitive status and the apnea-hypopnea index. Interaction terms were added between APOE4 status and covariates. RESULTS: REM sleep percentage (F=9.95, p=0.002, ηp2=0.049) and duration (F=9.23, p=0.003, ηp2=0.047) were lower in APOE4 carriers. The results were replicated in a subsample of 112 participants without moderate-to-severe obstructive sleep apnea. There were no significant interactions between APOE4 status and age, sex, cognitive status and obstructive sleep apnea in the whole sample. CONCLUSIONS: Our results show that APOE4 carriers exhibit lower REM sleep duration, including in cognitively unimpaired individuals, possibly resulting from early neurodegenerative processes in regions involved in REM sleep generation and maintenance.

5.
Genes (Basel) ; 15(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38674351

RESUMEN

The e4 allele of the apolipoprotein E gene is the strongest genetic risk factor for sporadic Alzheimer's disease. Nevertheless, how APOE is regulated is still elusive. In a trans-eQTL analysis, we found a genome-wide significant association between transmembrane protein 106B (TMEM106B) genetic variants and cortical APOE mRNA levels in human brains. The goal of this study is to determine whether TMEM106B is mis-regulated in Alzheimer's disease or in other neurodegenerative conditions. Available genomic, transcriptomic and proteomic data from human brains were downloaded from the Mayo Clinic Brain Bank and the Religious Orders Study and Memory and Aging Project. An in-house mouse model of the hippocampal deafferentation/reinnervation was achieved via a stereotaxic lesioning surgery to the entorhinal cortex, and mRNA levels were measured using RNAseq technology. In human temporal cortices, the mean TMEM106B expression was significantly higher in Alzheimer's disease compared to cognitively unimpaired individuals. In the mouse model, hippocampal Tmem106b reached maximum levels during the early phase of reinnervation. These results suggest an active response to tissue damage that is consistent with compensatory synaptic and terminal remodeling.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Humanos , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Apolipoproteínas E/genética , Masculino , Femenino , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Hipocampo/metabolismo , Anciano , Estudio de Asociación del Genoma Completo , Modelos Animales de Enfermedad
6.
J Alzheimers Dis ; 98(4): 1361-1375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578887

RESUMEN

Background: Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective: To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods: Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results: Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p <  0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions: Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas B , Colesterol , Contactinas
7.
Sleep ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526098

RESUMEN

STUDY OBJECTIVES: While short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation. METHODS: We tested 203 dementia-free participants (68.5±5.4y/o, 78M). The PREVENT-AD cohort includes older persons with a parental history of AD whose age was nearing their expected AD onset. We estimated expected years to AD onset by subtracting the participant's age from their parent's at AD dementia onset. We extracted actigraphy sleep variables of interest (times of sleep onset and morning awakening, time in bed, sleep efficiency, sleep duration) and general profiles (sleep fragmentation, phase delay, hypersomnia). CSF inflammatory biomarkers were assessed with OLINK multiplex technology. RESULTS: Proximity to, or exceeding, expected age of onset was associated with a sleep profile suggestive of hypersomnia (longer sleep, later morning awakening time). This hypersomnia sleep profile was associated with higher CSF neuroinflammatory biomarkers (IL-6, MCP-1, global score). Interactions analyses revealed that some of these sleep-neuroinflammation associations were present mostly in those closer/exceeding the age of expected AD onset, APOE4 carriers, and those with better memory performance. CONCLUSIONS: Proximity to, or exceeding, parental AD dementia onset was associated with a longer sleep pattern, which was related to elevated proinflammatory CSF biomarkers. We speculate that longer sleep may serve a compensatory purpose potentially triggered by neuroinflammation as individuals are approaching AD onset. Further studies should investigate whether neuroinflammatory-triggered long sleep duration could mitigate cognitive deficits.

8.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38388425

RESUMEN

Elevated iron deposition in the brain has been observed in older adult humans and persons with Alzheimer's disease (AD), and has been associated with lower cognitive performance. We investigated the impact of iron deposition, and its topographical distribution across hippocampal subfields and segments (anterior, posterior) measured along its longitudinal axis, on episodic memory in a sample of cognitively unimpaired older adults at elevated familial risk for AD (N = 172, 120 females, 52 males; mean age = 68.8 ± 5.4 years). MRI-based quantitative susceptibility maps were acquired to derive estimates of hippocampal iron deposition. The Mnemonic Similarity Task was used to measure pattern separation and pattern completion, two hippocampally mediated episodic memory processes. Greater hippocampal iron load was associated with lower pattern separation and higher pattern completion scores, both indicators of poorer episodic memory. Examination of iron levels within hippocampal subfields across its long axis revealed topographic specificity. Among the subfields and segments investigated here, iron deposition in the posterior hippocampal CA1 was the most robustly and negatively associated with the fidelity memory representations. This association remained after controlling for hippocampal volume and was observed in the context of normal performance on standard neuropsychological memory measures. These findings reveal that the impact of iron load on episodic memory performance is not uniform across the hippocampus. Both iron deposition levels as well as its spatial distribution, must be taken into account when examining the relationship between hippocampal iron and episodic memory in older adults at elevated risk for AD.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Hierro , Imagen por Resonancia Magnética , Memoria Episódica , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Anciano , Hipocampo/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hierro/metabolismo , Persona de Mediana Edad
9.
Alzheimers Dement (Amst) ; 16(1): e12521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371359

RESUMEN

INTRODUCTION: Measuring day-to-day sleep variability might reveal unstable sleep-wake cycles reflecting neurodegenerative processes. We evaluated the association between Alzheimer's disease (AD) fluid biomarkers with day-to-day sleep variability. METHODS: In the PREVENT-AD cohort, 203 dementia-free participants (age: 68.3 ± 5.4; 78 males) with a parental history of sporadic AD were tested with actigraphy and fluid biomarkers. Day-to-day variability (standard deviations over a week) was assessed for sleep midpoint, duration, efficiency, and nighttime activity count. RESULTS: Lower cerebrospinal fluid (CSF) ApoE, higher CSF p-tau181/amyloid-ß (Aß)42, and higher plasma p-tau231/Aß42 were associated with higher variability of sleep midpoint, sleep duration, and/or activity count. The associations between fluid biomarkers with greater sleep duration variability were especially observed in those that carried the APOE4 allele, mild cognitive impairment converters, or those with gray matter atrophy. DISCUSSION: Day-to-day sleep variability were associated with biomarkers of AD in at-risk individuals, suggesting that unstable sleep promotes neurodegeneration or, conversely, that AD neuropathology disrupts sleep-wake cycles.

10.
Brain ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37992295

RESUMEN

Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signaling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein (IGFBP) in the cerebrospinal fluid (CSF) - IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD biomarkers and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aß) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aß42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the QFP cohort, a unique population isolate from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and was negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 (CSF Aß(+)/t-tau(+)). In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (HR = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049), however IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2, in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aß(+)/t-tau(+) individuals and those with a greater risk of AD conversion.

11.
Brain Commun ; 5(6): fcad279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953840

RESUMEN

White matter hyperintensities are radiological abnormalities reflecting cerebrovascular dysfunction detectable using MRI. White matter hyperintensities are often present in individuals at the later stages of the lifespan and in prodromal stages in the Alzheimer's disease spectrum. Tissue alterations underlying white matter hyperintensities may include demyelination, inflammation and oedema, but these are highly variable by neuroanatomical location and between individuals. There is a crucial need to characterize these white matter hyperintensity tissue alterations in vivo to improve prognosis and, potentially, treatment outcomes. How different MRI measure(s) of tissue microstructure capture clinically-relevant white matter hyperintensity tissue damage is currently unknown. Here, we compared six MRI signal measures sampled within white matter hyperintensities and their associations with multiple clinically-relevant outcomes, consisting of global and cortical brain morphometry, cognitive function, diagnostic and demographic differences and cardiovascular risk factors. We used cross-sectional data from 118 participants: healthy controls (n = 30), individuals at high risk for Alzheimer's disease due to familial history (n = 47), mild cognitive impairment (n = 32) and clinical Alzheimer's disease dementia (n = 9). We sampled the median signal within white matter hyperintensities on weighted MRI images [T1-weighted (T1w), T2-weighted (T2w), T1w/T2w ratio, fluid-attenuated inversion recovery (FLAIR)] as well as the relaxation times from quantitative T1 (qT1) and T2* (qT2*) images. qT2* and fluid-attenuated inversion recovery signals within white matter hyperintensities displayed different age- and disease-related trends compared to normal-appearing white matter signals, suggesting sensitivity to white matter hyperintensity-specific tissue deterioration. Further, white matter hyperintensity qT2*, particularly in periventricular and occipital white matter regions, was consistently associated with all types of clinically-relevant outcomes in both univariate and multivariate analyses and across two parcellation schemes. qT1 and fluid-attenuated inversion recovery measures showed consistent clinical relationships in multivariate but not univariate analyses, while T1w, T2w and T1w/T2w ratio measures were not consistently associated with clinical variables. We observed that the qT2* signal was sensitive to clinically-relevant microstructural tissue alterations specific to white matter hyperintensities. Our results suggest that combining volumetric and signal measures of white matter hyperintensity should be considered to fully characterize the severity of white matter hyperintensities in vivo. These findings may have implications in determining the reversibility of white matter hyperintensities and the potential efficacy of cardio- and cerebrovascular treatments.

12.
Biol Psychiatry ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37689129

RESUMEN

Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.

13.
Alzheimers Dement ; 19(12): 5620-5631, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37294682

RESUMEN

INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aß)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aß and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aß42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aß-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E Îµ4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aß42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Femenino , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Proteína Ácida Fibrilar de la Glía , Plasma , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones , Proteínas tau
14.
Brain Sci ; 13(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36831775

RESUMEN

Associations between pathophysiological events and cognitive measures provide insights regarding brain networks affected during the clinical progression of Alzheimer's disease (AD). In this study, we assessed patients' scores in two delayed episodic memory tests, and investigated their associations with regional amyloid deposition and brain metabolism across the clinical spectrum of AD. We assessed the clinical, neuropsychological, structural, and positron emission tomography (PET) baseline measures of participants from the Alzheimer's Disease Neuroimaging Initiative. Subjects were classified as cognitively normal (CN), or with early (EMCI) or late (LMCI) mild cognitive impairment, or AD dementia. The memory outcome measures of interest were logical memory 30 min delayed recall (LM30) and Rey Auditory Verbal Learning Test 30 min delayed recall (RAVLT30). Voxel-based [18F]florbetapir and [18F]FDG uptake-ratio maps were constructed and correlations between PET images and cognitive scores were calculated. We found that EMCI individuals had LM30 scores negatively correlated with [18F]florbetapir uptake on the right parieto-occipital region. LMCI individuals had LM30 scores positively associated with left lateral temporal lobe [18F]FDG uptake, and RAVLT30 scores positively associated with [18F]FDG uptake in the left parietal lobe and in the right enthorhinal cortex. Additionally, LMCI individuals had LM30 scores negatively correlated with [18F]florbetapir uptake in the right frontal lobe. For the AD group, [18F]FDG uptake was positively correlated with LM30 in the left temporal lobe and with RAVLT30 in the right frontal lobe, and [18F]florbetapir uptake was negatively correlated with LM30 scores in the right parietal and left frontal lobes. The results show that the association between regional brain metabolism and the severity of episodic memory deficits is dependent on the clinical disease stage, suggesting a dynamic relationship between verbal episodic memory deficits, AD pathophysiology, and clinical disease stages.

15.
PLoS One ; 18(2): e0280471, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724157

RESUMEN

Alzheimer's disease and related dementias is a major public health burden-compounding over upcoming years due to longevity. Recently, clinical evidence hinted at the experience of social isolation in expediting dementia onset. In 502,506 UK Biobank participants and 30,097 participants from the Canadian Longitudinal Study of Aging, we revisited traditional risk factors for developing dementia in the context of loneliness and lacking social support. Across these measures of subjective and objective social deprivation, we have identified strong links between individuals' social capital and various indicators of Alzheimer's disease and related dementias risk, which replicated across both population cohorts. The quality and quantity of daily social encounters had deep connections with key aetiopathological factors, which represent 1) personal habits and lifestyle factors, 2) physical health, 3) mental health, and 4) societal and external factors. Our population-scale assessment suggest that social lifestyle determinants are linked to most neurodegeneration risk factors, highlighting them as promising targets for preventive clinical action.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/prevención & control , Estudios Longitudinales , Canadá/epidemiología , Aislamiento Social , Factores de Riesgo
16.
Alzheimers Dement ; 19(7): 2816-2830, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36583624

RESUMEN

INTRODUCTION: We investigate the CNTN5 rs1461684 G variant and the contactin 5 protein in sporadic Alzheimer's disease (sAD). METHODS: Contactin 5, sAD biomarkers, and synaptic markers were measured in the cerebrospinal fluid (CSF). Amyloid and tau deposition were assessed using positron emission tomography. Contactin 5 protein and mRNA levels were measured in brain tissue. RESULTS: CSF contactin 5 increases progressively in cognitively unimpaired individuals and is decreased in mild cognitive impairment and sAD. CSF contactin 5 correlates with sAD biomarkers and with synaptic markers. The rs1461684 G variant associates with faster disease progression in cognitively unimpaired subjects. Cortical full-length and isoform 3 CNTN5 mRNAs are decreased in the presence of the G allele and as a function of Consortium to Establish a Registry for Alzheimer's Disease stages. DISCUSSION: The newly identified rs1461684 G variant associates with sAD risk, rate of disease progression, and gene expression. Contactin 5 protein and mRNA are affected particularly in the early stages of the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Tomografía de Emisión de Positrones , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Contactinas
17.
PLoS Biol ; 20(12): e3001863, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36512526

RESUMEN

Alzheimer's disease is marked by intracellular tau aggregates in the medial temporal lobe (MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined codependent structural variations between the MTL's most vulnerable structure, the hippocampus (HC), and the DN at subregion resolution in individuals with Alzheimer's disease and related dementia (ADRD). By leveraging the power of the approximately 40,000 participants of the UK Biobank cohort, we assessed impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer's disease alleles on these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix's fimbria, and their cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further revealed male-specific HC-DN associations with air pollution and female-specific associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Encéfalo , Caracteres Sexuales , Femenino , Humanos , Masculino , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Encéfalo/anatomía & histología , Genotipo
18.
JAMA Neurol ; 79(10): 1025-1035, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35994280

RESUMEN

Importance: Preventive trials of anti-amyloid agents might preferably recruit persons showing earliest biologically relevant ß-amyloid (Aß) binding on positron emission tomography (PET). Objective: To investigate the timing at which Aß-PET binding starts showing associations with other markers of Alzheimer disease. Design, Setting, and Participants: This longitudinal multicentric cohort study included 3 independent cohorts: Presymptomatic Evaluation of Experimental or Novel Treatments for Alzheimer Disease (PREVENT-AD) (data collected from 2012-2020), Alzheimer Disease Neuroimaging Initiative (ADNI) (data collected from 2005-2019), and Harvard Aging Brain Study (HABS) (data collected from 2011-2019). In a 3-tiered categorization of Aß-PET binding spatial extent, individuals were assigned as having widespread Aß deposition if they showed positive signal throughout a designated set of brain regions prone to early Aß accumulation. Those with binding in some but not all were categorized as having regional deposition, while those who failed to show any criterion Aß signal were considered Aß-negative. All participants who were cognitively unimpaired at their first Aß PET scan. Main Outcomes and Measures: Differences in cerebrospinal fluid (CSF), genetics, tau-PET burden, and cognitive decline. Results: A total of 817 participants were included, including 129 from the PREVENT-AD cohort (mean [SD] age, 63.5 [4.7] years; 33 [26%] male; 126 [98%] White), 400 from ADNI (mean [SD] age, 73.6 [5.8] years; 190 [47%] male; 10 [5%] Hispanic, 338 [91%] White), and 288 from HABS (mean [SD] age, 73.7 [6.2] years; 117 [40%] male; 234 [81%] White). Compared with Aß-negative persons, those with regional Aß binding showed proportionately more APOE ε4 carriers (18 [64%] vs 22 [27%] in PREVENT-AD and 34 [31%] vs 38 [19%] in ADNI), reduced CSF Aß1-42 levels (F = 24 and 71), and greater longitudinal Aß-PET accumulation (significant ß = 0.019 to 0.056). Participants with widespread amyloid binding further exhibited notable cognitive decline (significant ß = -0.014 to -0.08), greater CSF phosphorylated tau181 (F = 5 and 27), and tau-PET binding (all F > 7.55). Using each cohort's specified dichotomous threshold for Aß positivity or a visual read classification, most participants (56% to 100%, depending on classification method and cohort) with regional Aß would have been classified Aß-negative. Conclusions and Relevance: Regional Aß binding appears to be biologically relevant and participants at this stage remain relatively free from CSF phosphorylated tau181, tau-PET binding, and related cognitive decline, making them ideal targets for anti-amyloid agents. Most of these individuals would be classified as negative based on classical thresholds of Aß positivity.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4 , Biomarcadores/líquido cefalorraquídeo , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
19.
JAMA Neurol ; 79(10): 975-985, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907254

RESUMEN

Importance: National Institute on Aging-Alzheimer's Association (NIA-AA) workgroups have proposed biological research criteria intended to identify individuals with preclinical Alzheimer disease (AD). Objective: To assess the clinical value of these biological criteria to identify older individuals without cognitive impairment who are at near-term risk of developing symptomatic AD. Design, Setting, and Participants: This longitudinal cohort study used data from 4 independent population-based cohorts (PREVENT-AD, HABS, AIBL, and Knight ADRC) collected between 2003 and 2021. Participants were older adults without cognitive impairment with 1 year or more of clinical observation after amyloid ß and tau positron emission tomography (PET). Median clinical follow-up after PET ranged from 1.94 to 3.66 years. Exposures: Based on binary assessment of global amyloid burden (A) and a composite temporal region of tau PET uptake (T), participants were stratified into 4 groups (A+T+, A+T-, A-T+, A-T-). Presence (+) or absence (-) of neurodegeneration (N) was assessed using temporal cortical thickness. Main Outcomes and Measures: Each cohort was analyzed separately. Primary outcome was clinical progression to mild cognitive impairment (MCI), identified by a Clinical Dementia Rating score of 0.5 or greater in Knight ADRC and by consensus committee review in the other cohorts. Clinical raters were blind to imaging, genetic, and fluid biomarker data. A secondary outcome was cognitive decline, based on a slope greater than 1.5 SD below the mean of an independent subsample of individuals without cognitive impairment. Outcomes were compared across the biomarker groups. Results: Among 580 participants (PREVENT-AD, 128; HABS, 153; AIBL, 48; Knight ADRC, 251), mean (SD) age ranged from 67 (5) to 76 (6) years across cohorts, with between 55% (137/251) and 74% (95/128) female participants. Across cohorts, 33% to 83% of A+T+ participants progressed to MCI during follow-up (mean progression time, 2-2.72 years), compared with less than 20% of participants in other biomarker groups. Progression further increased to 43% to 100% when restricted to A+T+(N+) individuals. Cox proportional hazard ratios for progression to MCI in the A+T+ group vs other biomarker groups were all 5 or greater. Many A+T+ nonprogressors also showed longitudinal cognitive decline, while cognitive trajectories in other groups remained predominantly stable. Conclusions and Relevance: The clinical prognostic value of NIA-AA research criteria was confirmed in 4 independent cohorts, with most A+T+(N+) older individuals without cognitive impairment developing AD symptoms within 2 to 3 years.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/psicología , Femenino , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Proteínas tau
20.
Ann Neurol ; 91(4): 548-560, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35084051

RESUMEN

OBJECTIVE: The objective of this study was to evaluate novel plasma p-tau231 and p-tau181, as well as Aß40 and Aß42 assays as indicators of tau and Aß pathologies measured with positron emission tomography (PET), and their association with cognitive change, in cognitively unimpaired older adults. METHODS: In a cohort of 244 older adults at risk of Alzheimer's disease (AD) owing to a family history of AD dementia, we measured single molecule array (Simoa)-based plasma tau biomarkers (p-tau231 and p-tau181), Aß40 and Aß42 with immunoprecipitation mass spectrometry, and Simoa neurofilament light (NfL). A subset of 129 participants underwent amyloid-ß (18 F-NAV4694) and tau (18 F-flortaucipir) PET assessments. We investigated plasma biomarker associations with Aß and tau PET at the global and voxel level and tested plasma biomarker combinations for improved detection of Aß-PET positivity. We also investigated associations with 8-year cognitive change. RESULTS: Plasma p-tau biomarkers correlated with flortaucipir binding in medial temporal, parietal, and inferior temporal regions. P-tau231 showed further associations in lateral parietal and occipital cortices. Plasma Aß42/40 explained more variance in global Aß-PET binding than Aß42 alone. P-tau231 also showed strong and widespread associations with cortical Aß-PET binding. Combining Aß42/40 with p-tau231 or p-tau181 allowed for good distinction between Aß-negative and -positive participants (area under the receiver operating characteristic curve [AUC] range = 0.81-0.86). Individuals with low plasma Aß42/40 and high p-tau experienced faster cognitive decline. INTERPRETATION: Plasma p-tau231 showed more robust associations with PET biomarkers than p-tau181 in presymptomatic individuals. The combination of p-tau and Aß42/40 biomarkers detected early AD pathology and cognitive decline. Such markers could be used as prescreening tools to reduce the cost of prevention trials. ANN NEUROL 2022;91:548-560.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Proteínas tau , Anciano , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...