Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 133(12)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32501286

RESUMEN

The mechanism and role of transient F-actin recruitment, or F-actin 'flashes', on phagosomes remains enigmatic. Here we provide a comprehensive characterization of F-actin flashing dynamics on phagosomes, including receptor and signaling involvement. F-actin flashes predominate during the integrin-driven complement receptor (CR)-mediated phagocytosis. F-actin flashes begin shortly after internalization and persist on phagosomes for approximately 3 minutes before disassembling and reassembling several times within the first hour. Strikingly, the appearance of F-actin flashes on phagosomes coincides with morphological deformation, lysis and occasional fission of internalized red blood cells. The cadence of flashes depends on particle stiffness, and the F-actin networks on phagosomes are enriched in mechanosensitive components including focal adhesion proteins, RhoA and actomyosin. Inhibiting Arp2/3 and myosin IIA activity significantly reduces the frequency at which phagosome cargo becomes deformed during transient F-actin accumulation. At later time points, post-F-actin flashing, enhanced degradation of phagosome contents is observed, compared with non-flashing phagosomes. Taken together, these data suggest that actomyosin-driven phagosome contractions serve to disrupt malleable particles physically, a process akin to mastication, to enhance later enzymatic digestion.


Asunto(s)
Actinas , Fagosomas , Citoesqueleto de Actina , Digestión , Macrófagos , Fagocitosis
2.
Emerg Top Life Sci ; 3(1): 53-62, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33523192

RESUMEN

Most monogenic disorders are caused by a pathologic deficit or excess of a single transcript and/or protein. Given that small molecules, including drugs, can affect levels of mRNA and protein, the pharmacologic normalization of such pathogenic dosage represents a possible therapeutic approach for such conditions. Here, we review the literature exploring pharmacologic modulation of mRNA and/or protein levels for disorders with paralogous modifier genes, for haploinsufficient disorders (insufficient gene-product), as well as toxic gain-of-function disorders (surplus or pathologic gene-product). We also discuss challenges facing the development of rare disease therapy by pharmacologic modulation of mRNA and protein. Finally, we lay out guiding principles for selection of disorders which may be amenable to this approach.

3.
J Cell Biochem ; 117(1): 132-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26084267

RESUMEN

Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections, disrupts cytokinesis and causes significant multinucleation in host cells. Here, we demonstrate that multinuclear cells that result from unsuccessful cell division contain significantly higher Golgi content, an important source of lipids for chlamydiae. Using immunofluorescence and fluorescent live cell imaging, we show that C. trachomatis in multinuclear cells indeed intercept Golgi-derived lipid faster than in mononuclear cells. Moreover, multinuclear cells enhance C. trachomatis inclusion growth and infectious particle formation. Together, these results indicate that C. trachomatis robustly position inclusions to the cell equator to disrupt host cell division in order to acquire host Golgi-derived lipids more quickly in multinucleated progeny cells.


Asunto(s)
Chlamydia trachomatis/patogenicidad , Citocinesis/fisiología , Células Gigantes/microbiología , División Celular/fisiología , Línea Celular , Aparato de Golgi/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Metafase/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...