Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36836250

RESUMEN

Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.

2.
J Fungi (Basel) ; 9(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675925

RESUMEN

Scedosporium species are usually soil saprophytes but some members of the genus such as S. apiospermum and S. aurantiacum have been regularly reported as causing human respiratory infections, particularly in patients with cystic fibrosis (CF). Because of their low sensitivity to almost all available antifungal drugs, a better understanding of the pathogenic mechanisms of these fungi is mandatory. Likewise, identification of the origin of the contamination of patients with CF may be helpful to propose prophylactic measures. In this aim, environmental studies were conducted demonstrating that Scedosporium species are abundant in human-made environments and associated with nutrient-rich substrates. Although their natural habitat remains unknown, there is accumulated evidence to consider them as wood-decaying fungi. This study aimed to demonstrate the ability of these fungi to utilize lignocellulose compounds, especially lignin, as a carbon source. First, the lignolytic properties of Scedosporium species were confirmed by cultural methods, and biochemical assays suggested the involvement of peroxidases and oxidases as lignin-modifying enzymes. Scedosporium genomes were then screened using tBLASTn searches. Fifteen candidate genes were identified, including four peroxidase and seven oxidase genes, and some of them were shown, by real-time PCR experiments, to be overexpressed in lignin-containing medium, thus confirming their involvement in lignin degradation.

3.
Front Microbiol ; 12: 630753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276578

RESUMEN

Lignin, a natural polyaromatic macromolecule, represents an essential component of the lignocellulose biomass. Due to its complexity, the natural degradation of this molecule by microorganisms still remains largely misunderstood. Extracellular oxidative degradation is followed by intracellular metabolic degradation of conserved aromatic intermediate compounds (protocatechuate, catechol, hydroxyquinol, and gentisic acid) that are used as carbon and energy sources. The lower funneling pathways are characterized by the opening of the aromatic ring of these molecules through dioxygenases, leading to degradation products that finally enter into the tricarboxylic acid (TCA) cycle. In order to better understand the adaptation mechanisms of Scedosporium species to their environment, these specific catabolism pathways were studied. Genes encoding ring-cleaving dioxygenases were identified in Scedosporium genomes by sequence homology, and a bioinformatic analysis of the organization of the corresponding gene clusters was performed. In addition, these predictions were confirmed by evaluation of the expression level of the genes of the gentisic acid cluster. When the fungus was cultivated in the presence of lignin or gentisic acid as sole carbon source, experiments revealed that the genes of the gentisic acid cluster were markedly overexpressed in the two Scedosporium species analyzed (Scedosporium apiospermum and Scedosporium aurantiacum). Only the gene encoding a membrane transporter was not overexpressed in the gentisic acid-containing medium. Together, these data suggest the involvement of the lower funneling pathways in Scedosporium adaptation to their environment.

4.
PLoS One ; 15(2): e0228897, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32092070

RESUMEN

Scedosporium species are opportunistic pathogens causing various infections, including disseminated infections in severely immunocompromised patients. Preventive measures aiming to reduce the risk of exposure to these fungi require a better knowledge on their ecology and on the sources of contamination of the patients. In this context, 99 soil samples from the Rabat-Sale-Kenitra and Fez-Meknes regions in Morocco were analyzed. Samples were inoculated on the highly selective Scedo-Select III culture medium, and seven chemical parameters of the soils were measured. Scedosporium species were detected in 48 of the samples, with the highest density in soils from wastewater treatment plants and landfills, followed by those from roadsides and polluted riverbanks, thus confirming the impact of human activities on their ecology. Scedosporium apiospermum was the most common species, followed by S. boydii and S. aurantiacum. Analysis of the chemical parameters of the soils revealed the presence of Scedosporium species was mainly associated with a moderate electrical conductivity, a pH range of 7.0 to 7.6, a nutrient-rich content and a moderate phosphorus amount. Thereby, these results demonstrated the relatively high occurrence of Scedosporium in Morocco and highlighted the impact of phosphorus content on their ecology.


Asunto(s)
Scedosporium/genética , Scedosporium/aislamiento & purificación , Ecología , Ecosistema , Humanos , Marruecos , Scedosporium/patogenicidad , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...