Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Appl Oral Sci ; 32: e20230326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656049

RESUMEN

OBJECTIVE: This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). METHODOLOGY: Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). RESULTS: The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. CONCLUSION: The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.


Asunto(s)
Resinas Acrílicas , Adhesión Bacteriana , Biopelículas , Candida albicans , Bases para Dentadura , Ensayo de Materiales , Microscopía Confocal , Microscopía Electrónica de Rastreo , Impresión Tridimensional , Staphylococcus aureus , Streptococcus mutans , Propiedades de Superficie , Humectabilidad , Streptococcus mutans/fisiología , Staphylococcus aureus/fisiología , Candida albicans/fisiología , Bases para Dentadura/microbiología , Resinas Acrílicas/química , Análisis de Varianza , Reproducibilidad de los Resultados , Dentadura Completa/microbiología , Valores de Referencia , Recuento de Colonia Microbiana , Modelos Lineales
2.
Antibiotics (Basel) ; 13(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534708

RESUMEN

Oral infections occur due to contact between biofilm rich in Candida albicans formed on the inner surface of complete dentures and the mucosa. This study investigated historical advances in the prevention and treatment of oral mucosal infection and identified gaps in the literature. Bibliographic research was conducted, looking at PubMed, Embase, Web of Science, and Scopus, where 935 articles were found. After removing duplicates and excluding articles by reading the title and abstract, 131 articles were selected for full reading and 104 articles were included. Another 38 articles were added from the gray literature. This review followed the PRISMA-ScR guidelines. The historical period described ranges from 1969 to 2023, in which, during the 21st century, in vitro and in vivo studies became more common and, from 2010 to 2023, the number of randomized controlled trials increased. Among the various approaches tested are the incorporation of antimicrobial products into prosthetic materials, the improvement of oral and denture hygiene protocols, the development of synthetic and natural products for the chemical control of microorganisms, and intervention with local or systemic antimicrobial agents. Studies report good results with brushing combined with sodium hypochlorite, and new disinfectant solutions and products incorporated into prosthetic materials are promising.

3.
J. appl. oral sci ; 32: e20230326, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1558246

RESUMEN

Abstract Studies evaluating the roughness, wettability and microbial adhesion of 3D-printed resins for complete denture bases and teeth are scarce. Objective This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). Methodology Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). Results The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. Conclusion The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.

4.
Antibiotics (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998832

RESUMEN

To assess the effect of hygiene protocols and time on the physical-mechanical properties and colony-forming units (CFU) of Candida albicans, Staphylococcus aureus, and Streptococcus mutans on 3D-printed denture resins (SmartPrint and Yller) with extrinsic pigmentation compared to conventional resin (CR). The protocols were evaluated: brushing (B), brushing and immersion in water (W), 0.25% sodium hypochlorite (SH), and 0.15% triclosan (T), simulating 0, 1, 3, and 5 years. The data were analyzed by ANOVA with repeated measurements, ANOVA (Three-way) and Tukey's post-test, generalized linear model with Bonferroni adjustment, and ANOVA (Two-way) and Tukey's post-test (α = 0.05). The protocols influenced color (p = 0.036) and Knoop hardness (p < 0.001). Surface roughness was influenced by protocols/resin (p < 0.001) and time/resin (p = 0.001), and flexural strength by time/protocols (p = 0.014). C. albicans showed interactions with all factors (p = 0.033). Staphylococcus aureus was affected by protocols (p < 0.001). Streptococcus mutans exhibited no count for SH and T (p < 0.001). Yller resin showed more color changes. The 3D-printed resins displayed lower microhardness, increased roughness, and decreased flexural strength compared to CR with all protocols in a simulated period of 5 years. The indication of printed resins should be restricted to less than 3 years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...