Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 15(11)2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37999498

RESUMEN

Organic acids and essential oils are commonly used in the poultry industry as antimicrobials and for their beneficial effects on gut health, growth performance, and meat quality. A common postharvest storage fungal colonist, Aspergillus flavus, contaminates corn, the primary component of poultry feed, with the highly detrimental mycotoxin, aflatoxin. Aflatoxin adversely affects poultry feed intake, feed conversion efficiency, weight gain, egg production, fertility, hatchability, and poultry meat yield. Both organic acids and essential oils have been reported to inhibit the growth of A. flavus. Thus, we evaluated if the inhibitory synergy between combined essential oils (cinnamon, lemongrass, and oregano) and organic acids (acetic, butyric, and propionic) prevents A. flavus growth. The study confirmed that these compounds inhibit the growth of A. flavus and that synergistic interactions do occur between some of them. Overall, cinnamon oil was shown to have the highest synergy with all the organic acids tested, requiring 1000 µL/L air of cinnamon oil and 888 mg/kg of butyric acid to fully suppress A. flavus growth on corn kernels. With the strong synergism demonstrated, combining certain essential oils and organic acids offers a potentially effective natural method for controlling postharvest aflatoxin contamination in poultry feed.


Asunto(s)
Aflatoxinas , Micotoxinas , Aceites Volátiles , Animales , Aspergillus flavus , Aceites Volátiles/farmacología , Aves de Corral , Aflatoxinas/análisis , Micotoxinas/farmacología
3.
J Anim Sci ; 100(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908786

RESUMEN

Skeletal muscle growth is largely dependent on the proliferation and differentiation of muscle-specific stem cells known as satellite cells (SC). Previous work has shown that dietary inclusion of the vitamin D3 metabolite, 25-hydroxycholecalciferol (25OHD3), also called calcidiol, can promote skeletal muscle growth in post-hatch broiler chickens. Improving vitamin D status of broiler breeder hens by feeding 25OHD3 in addition to vitamin D3 has also been shown to positively impact progeny. Yet, whether combined pre- and post-hatch supplementation with 25OHD3 produces an additive or synergistic SC-mediated, skeletal muscle growth response remains unanswered. To evaluate the effect of combined maternal and post-hatch dietary 25OHD3 supplementation on the growth and SC mitotic activity of the Pectoralis major (PM) muscles in broiler chickens, a randomized complete block design experiment with the main effects of maternal diet (MDIET) and post-hatch diet (PDIET) arranged in a 2 × 2 factorial treatment structure was conducted. From 25 to 36 wk of age, broiler breeder hens were fed 1 of 2 MDIET formulated to provide 5,000 IU D3 (MCTL) or 2,240 IU of D3 + 2,760 IU of 25OHD3 per kg of feed (M25OHD3). Their male broiler chick offspring (n = 400) hatched from eggs collected from 35 to 36 wk of age were reared in raised floor pens. Broilers were fed 1 of 2 PDIET formulated to provide 5,000 IU of D3 per kg of feed (PCTL) or 2,240 IU of D3 + 2,760 IU of 25OHD3 per kg of feed (P25OHD3). Muscle was collected at days 4, 8, 15, 22, and 29 and stored until immunofluorescence analysis. Data were analyzed as a 2-way ANOVA with SAS GLIMMIX. Dietary 25OHD3 was effectively transferred from hen plasma to egg yolks (P = 0.002) and to broiler progeny plasma (days 4 to 22; P ≤ 0.044). Including 25OHD3 in either MDIET or PDIET altered PM hypertrophic growth prior to day 29 (P ≥ 0.001) and tended to reduce Wooden Breast severity (P ≤ 0.089). Mitotic SC populations were increased in PM of MCTL:P25OHD3 and M25OHD:PCTL-fed broilers at d 4 (P = 0.037). At d 8, the PM mitotic SC populations were increased 33% by P25OHD3 (P = 0.054). The results of this study reveal that combined maternal and post-hatch 25OHD3 supplementation does not produce additive or synergistic effects on SC-mediated broiler muscle growth. However, vitamin D status improvement through dietary 25OHD3 inclusion in either the maternal or post-hatch diet stimulated broiler breast muscle growth by increasing proliferating SC populations.


Skeletal muscle growth is largely dependent on the proliferation and differentiation of muscle-specific stem cells known as satellite cells (SC). Previous work has shown that dietary inclusion of the vitamin D3 metabolite, 25-hydroxycholecalciferol (25OHD3), also called calcidiol, can promote skeletal muscle growth in post-hatch broiler chickens. Improving vitamin D status of broiler breeder hens by feeding 25OHD3 in addition to vitamin D3 has also been shown to positively impact progeny. Yet, whether combined pre- and post-hatch supplementation with 25OHD3 produces an additive or synergistic SC-mediated, skeletal muscle growth response remains unanswered. The results of this study reveal that combined maternal and post-hatch 25OHD3 supplementation does not produce additive or synergistic effects on SC-mediated broiler muscle growth. However, vitamin D status improvement through dietary 25OHD3 inclusion in either the maternal or post-hatch diet stimulated broiler breast muscle growth by increasing proliferating SC populations. Overall, this work answers not only practical questions for the broiler industry regarding the possible benefits of combining maternal and post-hatch dietary 25OHD3 supplementation but also improves our understanding of vitamin D's role in pre- and post-hatch broiler skeletal muscle growth.


Asunto(s)
Calcifediol , Pollos , Alimentación Animal/análisis , Animales , Calcifediol/farmacología , Pollos/fisiología , Colecalciferol , Dieta/veterinaria , Suplementos Dietéticos/análisis , Femenino , Masculino , Músculos Pectorales , Vitamina D , Vitaminas/farmacología
4.
J Food Prot ; 85(5): 798-802, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35146522

RESUMEN

ABSTRACT: Semicarbazide (SEM) is routinely employed as an indicator for the use of nitrofurazone, a banned antimicrobial. The validity of SEM as a nitrofurazone marker has been scrutinized because of other possible sources of the compound. Nonetheless, a U.S. trade partner rejected skin-on chicken thighs because of SEM detection and suspected nitrofurazone use. Because nitrofurazone has been banned in U.S. broiler production since 2003, we hypothesized that incidental de novo SEM formation occurs during broiler processing. To assess this possibility, raw leg quarters were collected from 23 commercial broiler processing plants across the United States and shipped frozen to our laboratory, where liquid chromatography-mass spectrometry was used to quantitatively assess for SEM. Leg quarter samples were collected at four points along the processing line: hot rehang (transfer from the kill line to the evisceration line), prechill (before the chilling process), postchill (immediately following chilling), and at the point of pack. Thigh meat with skin attached was removed from 535 leg quarters and analyzed in triplicate for SEM concentrations. The concentrations ranged from 0 to 2.67 ppb, with 462 (86.4%) of 535 samples below the regulatory decision level of 0.5 ppb of SEM. The 73 samples over the 0.5-ppb limit came from 21 plants; 53 (72.6%) of positive samples were in meat collected after chilling (postchill or point of pack). The difference in both prevalence and concentration of SEM detected before and after chilling was highly significant (P < 0.0001). These data support our hypothesis that SEM detection in raw broiler meat is related to de novo creation of the chemical during processing.


Asunto(s)
Pollos , Nitrofurazona , Animales , Inmersión , Carne/análisis , Semicarbacidas/análisis , Estados Unidos
5.
Vet World ; 15(11): 2725-2737, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36590121

RESUMEN

Background and Aim: Scientists are interested in identifying natural antibiotic substitutes that are effective against drug-resistant pathogenic microbes and spoilage fungi to counter pathogens and reduce the major public health problem of antibiotic residues in animal products. This study aimed to evaluate the antimicrobial activity of Rumex nervosus leaves (RNLs) as a medicinal herb against four bacterial and two fungal strains using absolute ethanol, 50% ethanol, and aqueous extracts. Materials and Methods: The antimicrobial activities of various RNL extracts against selected microbes were evaluated using the disk diffusion antibiotic susceptibility test, minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum fungicidal concentrations, and the poisoned food technique. Results: The absolute ethanol RNL extract showed the best bacteriostatic/bactericidal activity against Salmonella Typhimurium, Escherichia coli, and Staphylococcus aureus (MIC/MBC: 0.20/0.40, 0.20/0.40, and 0.32/0.65 mg/mL, respectively). The diameter of the zone of inhibition was larger (p < 0.05) for the 100% ethanol RNL extract (8.17 mm) against Salmonella Typhimurium, the 50% ethanol-RNL extract (11.5 mm) against E. coli, and the aqueous RNL extract (14.0 mm) against S. aureus than for any other bacterial isolate. The aqueous RNL extract strongly (p < 0.0001) inhibited the mycelial growth of Aspergillus fumigatus (100%) and Aspergillus niger (81.4%) compared with the control. Conclusion: The results of this study suggest that RNL is a promising new natural antimicrobial agent for food preservation. To date, most research on the antimicrobial properties of natural herbs has been conducted in vitro, with few exceptions in vivo and intervention-based research.

6.
Animals (Basel) ; 11(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34679860

RESUMEN

This study was designed to evaluate the effects of dietary supplemental DL-methionine (MET) on live performance and meat yield for broilers raised to a common weight. A total of 1552 one-day old Ross 708, sexed broilers were randomly distributed to 32 pens resulting in eight treatments (TRT) of four replicates with 44 male or 53 female/pen. A randomized complete block with a 2 × 4 (sex × 4 MET levels 0, 0.5, 1, and 2 g/kg) factorial arrangement of TRT was used. A common weight of 2400 g was approached by day 46 (1 and 2 g MET/kg feed) and day 48 (0 and 0.5 g MET/kg feed). Supplementation of MET at 1, and 2 g/kg had a lower (p < 0.01) feed conversion ratio (FCR) at day 46/48 than broilers fed 0.5 g MET/kg. Broilers without supplemental MET had the worst (p < 0.01) feed conversion and average daily gain (ADG) at day 46/48. Birds fed 0 g MET/kg of feed had lower (p < 0.05) whole eviscerated carcass without giblets (WOG), yield than birds fed 2 g MET/kg of feed. Additionally, birds fed 0 g MET/kg of feed had lower (p < 0.05) breast fillet and tender percent yields than birds fed supplemental MET. Elimination of MET from organic broiler diets resulted in reduced ADG, breast fillet yield and feed efficiency of meat yield of broilers raised to day 46/48. Reduction in MET supplementation below current levels reduced the efficiency of meat production of organic broilers raised to day 46/48.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...