Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 129(3): 303-314, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34849559

RESUMEN

BACKGROUND AND AIMS: Grass silica short cell (GSSC) phytoliths appear to be the most reliable source of fossil evidence for tracking the evolutionary history and paleoecology of grasses. In recent years, modern techniques that quantitatively assess phytolith shape variation have widened opportunities for the classification of grass fossil phytoliths. However, phylogenetic, ecological and intraindividual variability patterns in phytolith shape remain largely unexplored. METHODS: The full range of intraindividual phytolith shape variation [3650 two-dimensional (2-D) outlines] from 73 extant grass species, 48 genera, 18 tribes and eight subfamilies (particularly Pooideae) was analysed using geometric morphometric analysis based on semi-landmarks spanning phytolith outlines. KEY RESULTS: The 2-D phytolith shape is mainly driven by deep-time diversification of grass subfamilies. There is distinct phytolith shape variation in early-diverging lineages of Pooideae (Meliceae, Stipeae). The amount of intraindividual variation in phytolith shape varies among species, resulting in a remarkable pattern across grass phylogeny. CONCLUSIONS: The phylogenetic pattern in phytolith shape was successfully revealed by applying geometric morphometrics to 2-D phytolith shape outlines, strengthening the potential of phytoliths to track the evolutionary history and paleoecology of grasses. Geometric morphometrics of 2-D phytolith shape is an excellent tool for analysis requiring large numbers of phytolith outlines, making it useful for quantitative palaeoecological reconstruction.


Asunto(s)
Fósiles , Poaceae , Evolución Biológica , Filogenia , Poaceae/genética , Dióxido de Silicio
2.
Ann Bot ; 127(2): 191-201, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32463863

RESUMEN

BACKGROUND AND AIMS: The relative contributions of inter- and intraspecific variation to phytolith shape and size have only been investigated in a limited number of studies. However, a detailed understanding of phytolith variation patterns among populations or even within a single plant specimen is of key importance for the correct taxonomic identification of grass taxa in fossil samples and for the reconstruction of vegetation and environmental conditions in the past. In this study, we used geometric morphometric analysis for the quantification of different sources of phytolith shape and size variation. METHODS: We used landmark-based geometric morphometric methods for the analysis of phytolith shapes in two extant grass species (Brachypodium pinnatum and B. sylvaticum). For each species, 1200 phytoliths were analysed from 12 leaves originating from six plants growing in three populations. Phytolith shape and size data were subjected to multivariate Procrustes analysis of variance (ANOVA), multivariate regression, principal component analysis and linear discriminant analysis. KEY RESULTS: Interspecific variation largely outweighed intraspecific variation with respect to phytolith shape. Individual phytolith shapes were classified with 83 % accuracy into their respective species. Conversely, variation in phytolith shapes within species but among populations, possibly related to environmental heterogeneity, was comparatively low. CONCLUSIONS: Our results imply that phytolith shape relatively closely corresponds to the taxonomic identity of closely related grass species. Moreover, our methodological approach, applied here in phytolith analysis for the first time, enabled the quantification and separation of variation that is not related to species discrimination. Our findings strengthen the role of grass phytoliths in the reconstruction of past vegetation dynamics.


Asunto(s)
Fósiles , Plantas , Análisis de Varianza , Análisis Discriminante , Análisis de Componente Principal
3.
Toxicol In Vitro ; 24(1): 240-4, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19735719

RESUMEN

Primary rat hepatocytes were used to test acute toxicities of 16 neutral aliphatic alcohols, ketones and esters. Their effects on cell viability and metabolic function (ureogenesis, i.e. biotransformation of ornithine to urea) were measured and expressed as EC50 values. Log EC50 values from both tests correlated with the log partition coefficients for the chemicals between n-octanol and water and log P(ow)-based QSAR models were derived. Log EC50 (viability) tightly correlates with log EC50 (ureogenesis): log EC50 (viability)=0.91 log EC50 (ureogenesis)+0.06. Each of these toxic indices can be substituted by the other one. The toxic indices for both cell viability and metabolic disorder can be estimated using log EC50 for movement inhibition in the oligochaete Tubifex tubifex and the respective QSAR equation. It eliminates a usage of rats. Their correlations were proved and justified.


Asunto(s)
Hepatocitos/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Toxicología/métodos , Animales , Separación Celular , Células Cultivadas , Química Física , Colorantes , Relación Dosis-Respuesta a Droga , Hepatocitos/metabolismo , Indicadores y Reactivos , Masculino , Valor Predictivo de las Pruebas , Ratas , Ratas Wistar , Soluciones , Azul de Tripano , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...